留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(11)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1243
  • HTML全文浏览量:  270
  • PDF下载量:  54
  • 被引次数: 0
Guotao Zhou, Yilin Wang, Tiangui Qi, Qiusheng Zhou, Guihua Liu, Zhihong Peng,  and Xiaobin Li, Comparison of the effects of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion of goethitic bauxite, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1705-1715. https://doi.org/10.1007/s12613-023-2628-3
Cite this article as:
Guotao Zhou, Yilin Wang, Tiangui Qi, Qiusheng Zhou, Guihua Liu, Zhihong Peng,  and Xiaobin Li, Comparison of the effects of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion of goethitic bauxite, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1705-1715. https://doi.org/10.1007/s12613-023-2628-3
引用本文 PDF XML SpringerLink
研究论文

钛/硅矿物对铝土矿拜耳法溶出过程中针铁矿转化的影响

文章亮点

  • (1) 揭示了拜耳法溶出过程中钛/硅矿物对针铁矿转化的影响
  • (2) 锐钛矿因在针铁矿表面产生致密的钛酸钠层而强烈阻滞针铁矿转化
  • (3) 明确了还原剂消除钛/硅矿物对针铁矿转化阻滞作用的机理
  • 针铁矿型高铁三水铝石矿是目前氧化铝工业广泛使用的原料。在拜耳溶出过程中,明确钛/硅矿物对针铁矿转化的影响是高效利用此类矿石中铁、铝资源的重要前提。本文研究了在拜耳法溶出过程中锐钛矿或高岭石与针铁矿之间的相互作用,研究结果表明:锐钛矿和高岭石对针铁矿的转化均有阻滞作用,锐钛矿与铝酸钠溶液反应后在针铁矿表面产生致密的钛酸钠层,从而产生更显著的影响,而高岭石反应生成的水合铝硅酸钠形成非致密吸附层影响较小;加入还原剂促进了拜耳溶出过程中磁铁矿的形成,从而有助于消除锐钛矿或高岭石对针铁矿转化的阻滞作用。在针铁矿转化过程中,钛嵌入磁铁矿晶格中,形成钛磁铁矿,同时,磁铁矿和水合铝硅酸钠之间相互作用的减弱进一步降低了高岭石的影响。最后,以几内亚高铁三水铝石矿为原料,验证了上述研究结果。在还原拜耳法溶出过程中,氧化铝相对溶出率达到98.87%,赤泥中氧化铁含量达72.99wt%,有希望通过钢铁工业大幅消纳。
  • Research Article

    Comparison of the effects of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion of goethitic bauxite

    + Author Affiliations
    • Goethitic bauxite is a widely used raw material in the alumina industry. It is an essential prerequisite to clarify the effect of Ti- and Si-containing minerals on goethite transformation in the Bayer digestion process, which could efficiently utilize the Fe- and Al-containing minerals present in goethitic bauxite. In this work, the interactions between anatase or kaolinite with goethite during various Bayer digestion processes were investigated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results showed that anatase and kaolinite hindered the transformation of goethite. Anatase exerted more significant effects than kaolinite due to the dense sodium titanate layer on the goethite surface after reacting with the sodium aluminate solution. Adding the reductant hydrazine hydrate could eliminate the retarding effect by inducing the transformation of goethite into magnetite. In this process, titanium was embedded into the magnetite lattice to form Ti-containing magnetite. Furthermore, the weakening of the interaction between magnetite and sodium aluminosilicate hydrate reduced the influence of kaolinite. As a validation of the above results, the reductive Bayer method resulted in the transformation of goethite into goethitic bauxite with 98.87% relative alumina digestion rate. The obtained red mud with 72.99wt% Fe2O3 could be further utilized in the steel industry. This work provides a clear understanding of the transformative effects of Ti- and Si-containing minerals on iron mineral transformation and aids the comprehensive use of iron and aluminum in goethitic bauxite subjected to the reductive Bayer method.
    • loading
    • Supplementary Information-10.1007s12613-023-2628-3.docx
    • [1]
      S. Novell, Alumina production statistics reports, (2022-06-13)[2022-11-29]. https://www.world-aluminium.org/statistics/alumina-production.
      [2]
      A.C. Scheinost, D.G. Schulze, and U. Schwertmann, Diffuse reflectance spectra of Al substituted goethite: A ligand field approach, Clays Clay Miner., 47(1999), No. 2, p. 156. doi: 10.1346/CCMN.1999.0470205
      [3]
      F.M. Kaußen and B. Friedrich, Methods for alkaline recovery of aluminum from bauxite residue, J. Sustain. Metall., 2(2016), No. 4, p. 353. doi: 10.1007/s40831-016-0059-3
      [4]
      A.R. Hind, S.K. Bhargava, and S.C. Grocott, The surface chemistry of Bayer process solids: A review, Colloids Surf. A, 146(1999), No. 1-3, p. 359. doi: 10.1016/S0927-7757(98)00798-5
      [5]
      X.B. Li, L.L. Kong, T.G. Qi, Q.S. Zhou, Z.H. Peng, and G.H. Liu, Effect of alumogoethite in Bayer digestion process of high-iron gibbsitic bauxite, Chin. J. Nonferrous Met., 23(2013), No. 2, p. 543. doi: 10.1016/S1003-6326(13)62497-8
      [6]
      G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Low-temperature thermal conversion of Al-substituted goethite in gibbsitic bauxite for maximum alumina extraction, RSC Adv., 12(2022), No. 7, p. 4162. doi: 10.1039/D1RA09013E
      [7]
      A. Suss, A. Fedyaev, N. Kuznetzova, et al., Technology solutions to increase alumina recovery from aluminogoethitic bauxites, [in] Technical Session on Light Metals 2010 held at the 139th TMS Annual Meeting, Seattle, 2010, p. 53.
      [8]
      B.I. Whittington, The chemistry of CaO and Ca(OH)2 relating to the Bayer process, Hydrometallurgy, 43(1996), No. 1-3, p. 13. doi: 10.1016/0304-386X(96)00009-6
      [9]
      X.L. Pan, H.Y. Yu, K.W. Dong, G.F. Tu, and S.W. Bi, Pre-desilication and digestion of gibbsitic bauxite with lime in sodium aluminate liquor, Int. J. Miner. Metall. Mater., 19(2012), No. 11, p. 973. doi: 10.1007/s12613-012-0657-4
      [10]
      P. Smith, Reactions of lime under high temperature Bayer digestion conditions, Hydrometallurgy, 170(2017), p. 16. doi: 10.1016/j.hydromet.2016.02.011
      [11]
      X.F. Zhu, T.A. Zhang, and G.Z.Lü, Kinetics of carbonated decomposition of hydrogarnet with different silica saturation coefficients, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 472. doi: 10.1007/s12613-019-1913-7
      [12]
      D. Croker, M. Loan, and B.K. Hodnett, Sodium titanate formation in high temperature Bayer digestion, [in] The 17th International Symposium of ICSOBA, Montreal, 2006, p. 154.
      [13]
      L.L. Li, Z.G. Wu, H. Lv, F.Q. Liu, and H.L. Zhao, Reaction behavior of aluminogoethite and silica minerals in gibbsite bauxite in high-temperature digestion, J. Sustain. Metall., 8(2022), No. 1, p. 360. doi: 10.1007/s40831-022-00494-z
      [14]
      P. Smith, The processing of high silica bauxites—–Review of existing and potential processes, Hydrometallurgy, 98(2009), No. 1-2, p. 162. doi: 10.1016/j.hydromet.2009.04.015
      [15]
      T.C.M. Davis and J.E. Laurie, Method of Digesting Bauxite via the Bayer Process with the Addition of Reducing Agents, U.S. Patent, Appl. 4059672, 1977.
      [16]
      L.Y. Li, A study of iron mineral transformation to reduce red mud tailings, Waste Manage., 21(2001), No. 6, p. 525. doi: 10.1016/S0956-053X(00)00107-0
      [17]
      G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Enhanced conversion mechanism of Al-goethite in gibbsitic bauxite under reductive Bayer digestion process, Trans. Nonferrous Met. Soc. China, 32(2022), No. 9, p. 3077. doi: 10.1016/S1003-6326(22)66004-7
      [18]
      X.B. Li, Z.Y. Zhou, Y.L. Wang, et al., Enrichment and separation of iron minerals in gibbsitic bauxite residue based on reductive Bayer digestion, Trans. Nonferrous Met. Soc. China, 30(2020), No. 7, p. 1980. doi: 10.1016/S1003-6326(20)65355-9
      [19]
      L.A. Pasechnik, V.M. Skachkov, S.A. Bibanaeva, I.S. Medyankina, and V.G. Bamburov, Composition and properties of iron oxides in the products of hydrothermal treatment of red mud and bauxites, Russ. J. Inorg. Chem., 67(2022), No. 7, p. 1101. doi: 10.1134/S0036023622060183
      [20]
      A. Shoppert, D. Valeev, M.M. Diallo, et al., High-iron bauxite residue (red mud) valorization using hydrochemical conversion of goethite to magnetite, Materials, 15(2022), No. 23, art. No. 8423. doi: 10.3390/ma15238423
      [21]
      G.T. Zhou, Y.L. Wang, T.G. Qi, et al., Cleaning disposal of high-iron bauxite residue using hydrothermal hydrogen reduction, Bull. Environ. Contam. Toxicol., 109(2022), No. 1, p. 163. doi: 10.1007/s00128-022-03516-4
      [22]
      N. Brown and R.J. Tremblay, Some studies of the iron mineral transformations during high temperature digestion of Jamaica bauxite, [in] H. Forberg, ed., The Metallurgical Society of AIME, New York, 1974, p. 825.
      [23]
      J. Murray, L. Kirwan, M. Loan, and B.K. Hodnett, In-situ synchrotron diffraction study of the hydrothermal transformation of goethite to hematite in sodium aluminate solutions, Hydrometallurgy, 95(2009), No. 3-4, p. 239. doi: 10.1016/j.hydromet.2008.06.007
      [24]
      N.S. Mal'ts, V.I. Korneev, A.G. Suss, S.G. Sennikov, and I.B. Firfarova, Effect of the leaching conditions on the extraction of alumina from aluminogoethites, Non-Ferrous Met., 24(1983), No. 10, p. 47.
      [25]
      F. Wu, Aluminous Goethite in the Bayer Process and its Impact on Alumina Recovery and Settling [Dissertation], Curtin University, Perth, 2012, p. 158.
      [26]
      Y.L. Wang, X.B. Li, Q.S. Zhou, et al., Observation of sodium titanate and sodium aluminate silicate hydrate layers on diaspore particles in high-temperature Bayer digestion, Hydrometallurgy, 192(2020), art. No. 105255. doi: 10.1016/j.hydromet.2020.105255
      [27]
      H.D. Ruan, R.L. Frost, J.T. Kloprogge, and L. Duong, Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochim. Acta A, 58(2002), No. 5, p. 967. doi: 10.1016/S1386-1425(01)00574-1
      [28]
      B.I. Whittington, B.L. Fletcher, and C. Talbot, The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions, Hydrometallurgy, 49(1998), No. 1-2, p. 1. doi: 10.1016/S0304-386X(98)00021-8
      [29]
      Z.G. Wu, H. Lv, M.Z. Xie, L.L. Li, H.L. Zhao, and F.Q. Liu, Reaction behavior of quartz in gibbsite-boehmite bauxite in Bayer digestion and its effect on caustic consumption and alumina recovery, Ceram. Int., 48(2022), No. 13, p. 18676. doi: 10.1016/j.ceramint.2022.03.141
      [30]
      Y.L. Wang, X.B. Li, Q.S. Zhou, et al., Effects of Si-bearing minerals on the conversion of hematite into magnetite during reductive Bayer digestion, Hydrometallurgy, 189(2019), art. No. 105126. doi: 10.1016/j.hydromet.2019.105126
      [31]
      R.M. Cornell, R. Giovanoli, and P.W. Schindler, Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media, Clays Clay Miner., 35(1987), No. 1, p. 21. doi: 10.1346/CCMN.1987.0350103
      [32]
      T. Hiemstra, W.H.V. Riemsdijk, and G.H. Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides: A new approach, J. Colloid Interface Sci., 133(1989), No. 1, p. 91. doi: 10.1016/0021-9797(89)90284-1
      [33]
      F.G. Li and X.C. Zhang, Inspection Technology for Iron Ore, Standards Press of China, Beijing, 2005, p. 392.
      [34]
      Y.Q. Wei, A.Z. Liao, L. Wang, et al., Room temperature surface modification of ultrathin FeOOH cocatalysts on Fe2O3 photoanodes for high photoelectrochemical water splitting, J. Nanomater., 2020(2020), p. 1.
      [35]
      F.N.I. Sari, H.S. Chen, A.K. Anbalagan, et al., V-doped, divacancy-containing β-FeOOH electrocatalyst for high performance oxygen evolution reaction, Chem. Eng. J., 438(2022), art. No. 135515. doi: 10.1016/j.cej.2022.135515
      [36]
      Y.L. Wang, X.B. Li, B. Wang, et al., Interactions of iron and titanium-bearing minerals under high-temperature Bayer digestion conditions, Hydrometallurgy, 184(2019), p. 192. doi: 10.1016/j.hydromet.2019.01.006
      [37]
      M. Lin, L. Tng, T. Lim, et al., Hydrothermal synthesis of octadecahedral hematite (α-Fe2O3) nanoparticles: An epitaxial growth from goethite (α-FeOOH), J. Phys. Chem. C, 118(2014), No. 20, p. 10903. doi: 10.1021/jp502087h
      [38]
      M. Adhikari, E. Echeverria, G. Risica, D.N. McIlroy, M. Nippe, and Y. Vasquez, Synthesis of magnetite nanorods from the reduction of iron oxy-hydroxide with hydrazine, ACS Omega, 5(2020), No. 35, p. 22440. doi: 10.1021/acsomega.0c02928

    Catalog


    • /

      返回文章
      返回