Cite this article as:

Cheng Yao, Min Wang, Youjin Ni, Dazhi Wang, Haibo Zhang, Lidong Xing, Jian Gong, and Yanping Bao, Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp.1716-1728. https://dx.doi.org/10.1007/s12613-023-2629-2
Cheng Yao, Min Wang, Youjin Ni, Dazhi Wang, Haibo Zhang, Lidong Xing, Jian Gong, and Yanping Bao, Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp.1716-1728. https://dx.doi.org/10.1007/s12613-023-2629-2
引用本文 PDF XML SpringerLink

行波磁场对高强钢板坯枝晶生长行为的影响研究:工业试验和数值模拟

摘要: 本文研究了板坯连铸过程中高强钢22MnB5在行波磁场作用下的枝晶生长行为,分析了板坯凝固组织的形貌和溶质元素的分布。结果表明,当行波磁场开启较低的电流强度工作时,柱状晶会发生偏转和断裂。随着电流强度的增加,二次枝晶间距和溶质渗透率会减小,柱状晶会转变为等轴晶。行波磁场产生的电磁力改变了当地的温度梯度和速度大小,促进了枝晶的折断和熔断行为。枝晶的致密性和成分均匀性按照从优到劣的排序如下:柱-等转变区(行波磁场高电流强度工作时)、柱状晶区(行波磁场低电流强度工作时)、柱-等转变区(行波磁场低电流强度工作时)、等轴晶区(行波磁场高电流强度工作时)。最后,本文结合经验证的数值模拟结果、凝固前沿的边界层理论和枝晶折断-熔断模型,揭示了枝晶的偏转机制和生长过程。当忽略行波磁场造成的热应力,且枝晶不存在紧缩窄区时,钢液凝固前沿的速度大小达到0.041 m/s时枝晶出现折断行为。

 

Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation

Abstract: The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows: columnar-to-equiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break.

 

/

返回文章
返回