留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  532
  • HTML全文浏览量:  168
  • PDF下载量:  56
  • 被引次数: 0
Cheng Yao, Min Wang, Youjin Ni, Dazhi Wang, Haibo Zhang, Lidong Xing, Jian Gong,  and Yanping Bao, Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1716-1728. https://doi.org/10.1007/s12613-023-2629-2
Cite this article as:
Cheng Yao, Min Wang, Youjin Ni, Dazhi Wang, Haibo Zhang, Lidong Xing, Jian Gong,  and Yanping Bao, Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1716-1728. https://doi.org/10.1007/s12613-023-2629-2
引用本文 PDF XML SpringerLink
研究论文

行波磁场对高强钢板坯枝晶生长行为的影响研究:工业试验和数值模拟


  • 通讯作者:

    王敏    E-mail: wangmin@ustb.edu.cn

文章亮点

  • (1) 系统地研究了行波磁场对板坯不同凝固特征的影响规律
  • (2) 通过工业试验和数值模拟结合的方式探究了行波磁场的作用效果
  • (3) 通过凝固前沿的边界层理论揭示了枝晶偏转机制
  • (4) 建立枝晶折断-熔断模型解释了枝晶生长行为
  • 本文研究了板坯连铸过程中高强钢22MnB5在行波磁场作用下的枝晶生长行为,分析了板坯凝固组织的形貌和溶质元素的分布。结果表明,当行波磁场开启较低的电流强度工作时,柱状晶会发生偏转和断裂。随着电流强度的增加,二次枝晶间距和溶质渗透率会减小,柱状晶会转变为等轴晶。行波磁场产生的电磁力改变了当地的温度梯度和速度大小,促进了枝晶的折断和熔断行为。枝晶的致密性和成分均匀性按照从优到劣的排序如下:柱-等转变区(行波磁场高电流强度工作时)、柱状晶区(行波磁场低电流强度工作时)、柱-等转变区(行波磁场低电流强度工作时)、等轴晶区(行波磁场高电流强度工作时)。最后,本文结合经验证的数值模拟结果、凝固前沿的边界层理论和枝晶折断-熔断模型,揭示了枝晶的偏转机制和生长过程。当忽略行波磁场造成的热应力,且枝晶不存在紧缩窄区时,钢液凝固前沿的速度大小达到0.041 m/s时枝晶出现折断行为。
  • Research Article

    Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation

    + Author Affiliations
    • The dendrite growth behavior of high-strength steel during slab continuous casting with a traveling-wave magnetic field was studied in this paper. The morphology of the solidification structure and composition distribution were analyzed. Results showed that the columnar crystals could deflect and break when the traveling-wave magnetic field had low current intensity. With the increase in current intensity, the secondary dendrite arm spacing and solute permeability decreased, and the columnar crystal transformed into an equiaxed crystal. The electromagnetic force caused by the traveling-wave magnetic field changed the temperature gradient and velocity magnitude and promoted the breaking and fusing of dendrites. Dendrite compactness and composition uniformity were arranged in descending order as follows: columnar-to-equiaxed transition (high current intensity), columnar crystal zone (low current intensity), columnar-to-equiaxed transition (low current intensity), and equiaxed crystal zone (high current intensity). Verified numerical simulation results combined with the boundary layer theory of solidification front and dendrite breaking–fusing model revealed the dendrite deflection mechanism and growth process. When thermal stress is not considered, and no narrow segment can be found in the dendrite, the velocity magnitude on the solidification front of liquid steel can reach up to 0.041 m/s before the dendrites break.
    • loading
    • [1]
      P.S. Song and S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete, Constr. Build. Mater., 18(2004), No. 9, p. 669. doi: 10.1016/j.conbuildmat.2004.04.027
      [2]
      T. Senuma, Physical metallurgy of modern high strength steel sheets, ISIJ Int., 41(2001), No. 6, p. 520. doi: 10.2355/isijinternational.41.520
      [3]
      X.H. Qiang, F. Bijlaard, and H. Kolstein, Dependence of mechanical properties of high strength steel S690 on elevated temperatures, Constr. Build. Mater., 30(2012), p. 73. doi: 10.1016/j.conbuildmat.2011.12.018
      [4]
      H. Itoga, K. Tokaji, M. Nakajima, and H.N. Ko, Effect of surface roughness on step-wise SN characteristics in high strength steel, Int. J. Fatigue, 25(2003), No. 5, p. 379. doi: 10.1016/S0142-1123(02)00166-4
      [5]
      J.B. Yan, J.Y.R. Liew, M.H. Zhang, and J.Y. Wang, Mechanical properties of normal strength mild steel and high strength steel S690 in low temperature relevant to Arctic environment, Mater. Des., 61(2014), p. 150. doi: 10.1016/j.matdes.2014.04.057
      [6]
      X. Li, X.H. Wang, Y.P. Bao, J. Gong, W.G. Pang, and M. Wang, Effect of electromagnetic stirring on the solidification behavior of high-magnetic-induction grain-oriented silicon steel continuous casting slab, JOM, 72(2020), No. 10, p. 3628. doi: 10.1007/s11837-020-04058-y
      [7]
      A. Vakhrushev, A. Kharicha, Z.Q. Liu, et al., Electric current distribution during electromagnetic braking in continuous casting, Metall. Mater. Trans. B, 51(2020), No. 6, p. 2811. doi: 10.1007/s11663-020-01952-3
      [8]
      X.P. Song, S.S. Cheng, and Z.J. Cheng, Mathematical modelling of billet casting with secondary cooling zone electromagnetic stirrer, Ironmaking Steelmaking, 40(2013), No. 3, p. 189. doi: 10.1179/1743281212Y.0000000026
      [9]
      T.T. Natarajan and N. El-Kaddah, Finite element analysis of electromagnetic and fluid flow phenomena in rotary electromagnetic stirring of steel, Appl. Math. Model., 28(2004), No. 1, p. 47. doi: 10.1016/S0307-904X(03)00114-8
      [10]
      J.T. Huang, E.G. Wang, and J.C. He, Numerical simulation of linear electromagnetic stirring in secondary cooling region of slab caster, J. Iron Steel Res. Int., 10(2003), No. 3, p. 16.
      [11]
      Y. Xu, R.J. Xu, Z.J. Fan, C.B. Li, A.Y. Deng, and E.G. Wang, Analysis of cracking phenomena in continuous casting of 1Cr13 stainless steel billets with final electromagnetic stirring, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 534. doi: 10.1007/s12613-016-1264-6
      [12]
      C. Yao, M. Wang, M.Y. Zhang, L.D. Xing, H.B. Zhang, and Y.P. Bao, Effects of mold electromagnetic stirring on heat transfer, species transfer and solidification characteristics of continuous casting round billet, J. Mater. Res. Technol., 19(2022), p. 1766. doi: 10.1016/j.jmrt.2022.05.167
      [13]
      D.B. Jiang and M.Y. Zhu, Center segregation with final electromagnetic stirring in billet continuous casting process, Metall. Mater. Trans. B, 48(2017), No. 1, p. 444. doi: 10.1007/s11663-016-0864-x
      [14]
      J.L. Wang, R. Janisch, G.K.H. Madsen, and R. Drautz, First-principles study of carbon segregation in bcc iron symmetrical tilt grain boundaries, Acta Mater., 115(2016), p. 259. doi: 10.1016/j.actamat.2016.04.058
      [15]
      V. Ludlow, A. Normanton, A. Anderson, et al., Strategy to minimise central segregation in high carbon steel grades during billet casting, Ironmaking Steelmaking, 32(2005), No. 1, p. 68. doi: 10.1179/174328105X23978
      [16]
      C.L. Wu, Q. Wang, D.W. Li, et al., Macrosegregation under new flow pattern and temperature distribution induced by electromagnetic swirling flow in nozzle during continuous casting of square billet, J. Mater. Res. Technol., 9(2020), No. 3, p. 5630. doi: 10.1016/j.jmrt.2020.03.088
      [17]
      D. Jiang and M. Zhu, Solidification structure and macrosegregation of billet continuous casting process with dual electromagnetic stirrings in mold and final stage of solidification: A numerical study, Metall. Mater. Trans. B, 47(2016), No. 6, p. 3446. doi: 10.1007/s11663-016-0772-0
      [18]
      C.L. Wu, D.W. Li, X.W. Zhu, and Q. Wang, Influence of electromagnetic swirling flow in nozzle on solidification structure and macrosegregation of continuous casting square billet, Acta Metall. Sin., 55(2019), No. 7, p. 875.
      [19]
      D.V. Alexandrov and P.K. Galenko, A review on the theory of stable dendritic growth, Philos. Trans. R. Soc. London:Ser. A, 379(2021), No. 2205, art. No. 20200325.
      [20]
      M.S. Jalali, A. Zarei-Hanzaki, M. Malekan, et al., Substructure induced dendrite-fragmentation during thermomechanical processing of as-cast Mg–Sn–Li–Zn alloy, Mater. Lett., 305(2021), art. No. 130690. doi: 10.1016/j.matlet.2021.130690
      [21]
      Z.C. Luo and H.P. Wang, Primary dendrite growth kinetics and rapid solidification mechanism of highly undercooled Ti–Al alloys, J. Mater. Sci. Technol., 40(2020), p. 47. doi: 10.1016/j.jmst.2019.08.034
      [22]
      R. Oliveira, T.A. Costa, M. Dias, C. Konno, N. Cheung, and A. Garcia, Transition from high cooling rate cells to dendrites in directionally solidified Al–Sn–(Pb) alloys, Mater. Today Commun., 25(2020), art. No. 101490. doi: 10.1016/j.mtcomm.2020.101490
      [23]
      Y. Xu, T. Wang, F. Wang, and E.G. Wang, Influence of lower frequency electromagnetic field on dendritic crystal growth in special alloys, J. Cryst. Growth, 468(2017), p. 506. doi: 10.1016/j.jcrysgro.2017.02.008
      [24]
      J.K. Ren, Y. Chen, Y.F. Cao, M.Y. Sun, B. Xu, and D.Z. Li, Modeling motion and growth of multiple dendrites during solidification based on vector-valued phase field and two-phase flow models, J. Mater. Sci. Technol., 58(2020), p. 171. doi: 10.1016/j.jmst.2020.05.005
      [25]
      S.L. Yang, S.F. Yang, W. Liu, J.S. Li, J.G. Gao, and Y. Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
      [26]
      S.A. Sani, H. Arabi, S. Kheirandish, and G. Ebrahimi, Investigation on the homogenization treatment and element segregation on the microstructure of a γ/γ′-cobalt-based superalloy, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 222. doi: 10.1007/s12613-019-1727-7
      [27]
      H.B. Chen, M.J. Long, D.F. Chen, T. Liu, and H.M. Duan, Numerical study on the characteristics of solute distribution and the formation of centerline segregation in continuous casting (CC) slab, Int. J. Heat Mass Transfer, 126(2018), p. 843. doi: 10.1016/j.ijheatmasstransfer.2018.05.081
      [28]
      H. Shibata, S. Itoyama, Y. Kishimoto, S. Takeuchi, and H. Sekiguchi, Prediction of equiaxed crystal ratio in continuously cast steel slab by simplified columnar-to-equiaxed transition model, ISIJ Int., 46(2006), No. 6, p. 921. doi: 10.2355/isijinternational.46.921
      [29]
      S.K. Yin, S. Luo, W.J. Zhang, W.L. Wang, and M.Y. Zhu, Numerical simulation of macrosegregation in continuously cast gear steel 20CrMnTi with final electromagnetic stirring, J. Iron Steel Res. Int., 28(2021), No. 4, p. 424. doi: 10.1007/s42243-020-00490-1
      [30]
      D. Cornell and D.L. Katz, Flow of gases through consolidated porous media, Ind. Eng. Chem., 45(1953), No. 10, p. 2145. doi: 10.1021/ie50526a021
      [31]
      S. Asai and I. Muchi, Theoretical analysis and model experiments on the formation mechanism of channel-type segregation, ISIJ Int., 18(1978), No. 2, p. 90. doi: 10.2355/isijinternational1966.18.90
      [32]
      H.G. Zhong, R.J. Wang, Q.Y. Han, et al., Solidification structure and central segregation of 6Cr13Mo stainless steel under simulated continuous casting conditions, J. Mater. Res. Technol., 20(2022), p. 3408. doi: 10.1016/j.jmrt.2022.08.115
      [33]
      Y. Ji, H.Y. Tang, P. Lan, C.J. Shang, and J.Q. Zhang, Effect of dendritic morphology and central segregation of billet castings on the microstructure and mechanical property of hot-rolled wire rods, Steel Res. Int., 88(2017), No. 8, art. No. 1600426. doi: 10.1002/srin.201600426
      [34]
      J.D. Hunt, Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng. A, 65(1984), No. 1, p. 75. doi: 10.1016/0025-5416(84)90201-5
      [35]
      Y.N. Yu, Principles of Metallography, 1st ed., Metallurgical Industry Press, Beijing, 2000.
      [36]
      A. Vogel, Turbulent flow and solidification: Stir-cast microstructure, Met. Sci., 12(1978), No. 12, p. 576. doi: 10.1179/msc.1978.12.12.576
      [37]
      M.C. Flemings, Solidification processing, Metall. Trans. B, 5(1974), No. 10, p. 2121. doi: 10.1007/BF02643923

    Catalog


    • /

      返回文章
      返回