Cite this article as: |
Ran Wang, Xiu Song, Lei Wang, Yang Liu, Mitsuo Niinomi, Deliang Zhang, and Jun Cheng, New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1756-1763. https://doi.org/10.1007/s12613-023-2635-4 |
宋秀 E-mail: wanglei@mail.neu.edu.cn
王磊 E-mail: songxiu@mail.neu.edu.cn
[1] |
C.N. Elias, J.H.C. Lima, R. Valiev, and M.A. Meyers, Biomedical applications of titanium and its alloys, JOM, 60(2008), No. 3, p. 46. doi: 10.1007/s11837-008-0031-1
|
[2] |
Y.H. Li, C. Yang, H.D. Zhao, S.G. Qu, X.Q. Li, and Y.Y. Li, New developments of Ti-based alloys for biomedical applications, Materials, 7(2014), No. 3, p. 1709. doi: 10.3390/ma7031709
|
[3] |
H. Koizumi, Y. Takeuchi, H. Imai, T. Kawai, and T. Yoneyama, Application of titanium and titanium alloys to fixed dental prostheses, J. Prosthodont. Res., 63(2019), No. 3, p. 266. doi: 10.1016/j.jpor.2019.04.011
|
[4] |
J. Gallo, J. Vaculova, S.B. Goodman, Y.T. Konttinen, and J.P. Thyssen, Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement, Acta Biomater., 10(2014), No. 6, p. 2354. doi: 10.1016/j.actbio.2014.02.003
|
[5] |
D. Taylor, Observations on the role of fracture mechanics in biology and medicine, Eng. Fract. Mech., 187(2018), p. 422. doi: 10.1016/j.engfracmech.2018.01.002
|
[6] |
M. Niinomi, Recent titanium R&D for biomedical applications in Japan, JOM, 51(1999), No. 6, p. 32. doi: 10.1007/s11837-999-0091-x
|
[7] |
E. Takematsu, K. Cho, J. Hieda, et al., Adhesive strength of bioactive oxide layers fabricated on TNTZ alloy by three different alkali-solution treatments, J. Mech. Behav. Biomed. Mater., 61(2016), p. 174. doi: 10.1016/j.jmbbm.2015.12.046
|
[8] |
Y.S. Lee, M. Niinomi, M. Nakai, K. Narita, K. Cho, and H.H. Liu, Wear transition of solid-solution-strengthened Ti–29Nb–13Ta–4.6Zr alloys by interstitial oxygen for biomedical applications, J. Mech. Behav. Biomed. Mater., 51(2015), p. 398. doi: 10.1016/j.jmbbm.2015.07.001
|
[9] |
X. Song, M. Niinomi, M. Nakai, H. Tsutsumi, and L. Wang, Improvement in fatigue strength while keeping low Young’s modulus of a β-type titanium alloy through yttrium oxide dispersion, Mater. Sci. Eng. C, 32(2012), No. 3, p. 542. doi: 10.1016/j.msec.2011.12.007
|
[10] |
M. Zarka, B. Dikici, M. Niinomi, K.V. Ezirmik, M. Nakai, and H. Yilmazer, A systematic study of β-type Ti-based PVD coatings on magnesium for biomedical application, Vacuum, 183(2021), art. No. 109850. doi: 10.1016/j.vacuum.2020.109850
|
[11] |
M.A. Kalaie, A. Zarei-Hanzaki, M. Ghambari, P. Dastur, J. Málek, and E. Farghadany, The effects of second phases on superelastic behavior of TNTZ bio alloy, Mater. Sci. Eng. A, 703(2017), p. 513. doi: 10.1016/j.msea.2017.07.053
|
[12] |
H.H. Liu, M. Niinomi, M. Nakai, S. Obara, and H. Fujii, Improved fatigue properties with maintaining low Young’s modulus achieved in biomedical beta-type titanium alloy by oxygen addition, Mater. Sci. Eng. A, 704(2017), p. 10. doi: 10.1016/j.msea.2017.07.078
|
[13] |
T. Akahori, M. Niinomi, H. Fukui, M. Ogawa, and H. Toda, Improvement in fatigue characteristics of newly developed beta type titanium alloy for biomedical applications by thermo-mechanical treatments, Mater. Sci. Eng. C, 25(2005), No. 3, p. 248. doi: 10.1016/j.msec.2004.12.007
|
[14] |
M. Niinomi, Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti–29Nb–13Ta–4.6Zr, Biomaterials, 24(2003), No. 16, p. 2673. doi: 10.1016/S0142-9612(03)00069-3
|
[15] |
M. Ikeda, S.Y. Komatsu, I. Sowa, and M. Niinomi, Aging behavior of the Ti–29Nb–13Ta–4.6Zr new beta alloy for medical implants, Metall. Mater. Trans. A, 33(2002), No. 3, p. 487. doi: 10.1007/s11661-002-0110-9
|
[16] |
M. Niinomi, T. Hattori, K. Morikawa, et al., Development of low rigidity β-type titanium alloy for biomedical applications, Mater. Trans., 43(2002), No. 12, p. 2970. doi: 10.2320/matertrans.43.2970
|
[17] |
S. Kashef, A. Asgari, T.B. Hilditch, W.Y. Yan, V.K. Goel, and P.D. Hodgson, Fracture toughness of titanium foams for medical applications, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7689. doi: 10.1016/j.msea.2010.08.044
|
[18] |
A. Bhattacharjee, P. Ghosal, T.K. Nandy, S.V. Kamat, A.K. Gogia, and S. Bhargava, Effect of grain size on the tensile behaviour and fracture toughness of Ti–10V–4.5Fe–3Al beta titanium alloy, Trans. Indian Inst. Met., 61(2008), No. 5, p. 399. doi: 10.1007/s12666-008-0071-9
|
[19] |
J.O. Peters and G. Lütjering, Comparison of the fatigue and fracture of α+β and β titanium alloys, Metall. Mater. Trans. A, 32(2001), No. 11, p. 2805. doi: 10.1007/s11661-001-1031-8
|
[20] |
J.K. Fan, J.S. Li, H.C. Kou, K. Hua, and B. Tang, The interrelationship of fracture toughness and microstructure in a new near β titanium alloy Ti–7Mo–3Nb–3Cr–3Al, Mater. Charact., 96(2014), p. 93. doi: 10.1016/j.matchar.2014.07.018
|
[21] |
W. Zhou, P. Ge, Y.Q. Zhao, et al., Relationship between mechanical properties and microstructure in a new high strength β titanium alloy, Rare Met. Mater. Eng., 46(2017), No. 8, p. 2076. doi: 10.1016/S1875-5372(17)30182-0
|
[22] |
F. Ebrahimi and H.K. Seo, Ductile crack initiation in steels, Acta Mater., 44(1996), No. 2, p. 831. doi: 10.1016/1359-6454(95)00206-5
|
[23] |
F. Ebrahimi, A study of crack initiation in the ductile-to-brittle transition region of a weld, [in] R. Reed, ed., Fracture Mechanics: Eighteenth Symposium, ASTM International, West Conshohocken, 1988, p. 555.
|
[24] |
R. Wang, L. Wang, X. Song, Y. Liu, M. Niinomi, and J. Cheng, Phenomenological law and process of α phase evolution in a β-type bio-Titanium alloy TNTZ during aging, Mater. Charact., 182(2021), art. No. 111576. doi: 10.1016/j.matchar.2021.111576
|
[25] |
W.D. Cao and X.P. Lu, On the relationship between the geometry of deformed crack tip and crack parameters, Int. J. Fract., 25(1984), No. 1, p. 33. doi: 10.1007/BF01152748
|
[26] |
T. Chowdhury, S. Sivaprasad, H.N. Bar, S. Tarafder, and N.R. Bandyopadhyay, Stretch zone formation in cyclic fracture of 20MnMoNi55 pressure vessel steel, Eng. Fract. Mech., 148(2015), p. 60. doi: 10.1016/j.engfracmech.2015.09.026
|
[27] |
L. Wang, M. Niinomi, S. Takahashi, et al., Relationship between fracture toughness and microstructure of Ti–6Al–2Sn–4Zr–2Mo alloy reinforced with TiB particles, Mater. Sci. Eng. A, 263(1999), No. 2, p. 319. doi: 10.1016/S0921-5093(98)01163-0
|