Cite this article as: |
Quan Shi, Jue Tang, and Mansheng Chu, Key issues and progress of industrial big data-based intelligent blast furnace ironmaking technology, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1651-1666. https://doi.org/10.1007/s12613-023-2636-3 |
唐珏 E-mail: tangj@smm.neu.edu.cn
储满生 E-mail: chums@smm.neu.edu.cn
[1] |
J.L. Zhang, H.Y. Fu, Y.X. Liu, et al., Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1133. doi: 10.1007/s12613-022-2501-9
|
[2] |
H.N. He, X.C. Wang, G.Z. Peng, et al., Intelligent logistics system of steel bar warehouse based on ubiquitous information, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1367. doi: 10.1007/s12613-021-2325-z
|
[3] |
P. Zhou, P. Dai, H. D. Song, and T. Y. Chai, Data-driven recursive subspace identification based online modelling for prediction and control of molten iron quality in blast furnace ironmaking, IET Control Theory Appl., 11(2017), No. 14, p. 2343. doi: 10.1049/iet-cta.2016.1474
|
[4] |
L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
|
[5] |
K. Jiang, Z.H. Jiang, Y.F. Xie, D. Pan, and W.H. Gui, Prediction of multiple molten iron quality indices in the blast furnace ironmaking process based on attention-wise deep transfer network, IEEE Trans. Instrum. Meas., 71(2022), art. No. 2512114. doi: 10.1109/TIM.2022.3185325
|
[6] |
S. Liu, S. Xie, and Q. Zhang, Multi-energy synergistic optimization in steelmaking process based on energy hub concept, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1378. doi: 10.1007/s12613-021-2281-7
|
[7] |
J.P. Li, C.C. Hua, Y.N Yang, and X.P. Guan, A novel MIMO T–S fuzzy modeling for prediction of blast furnace molten iron quality with missing outputs, IEEE Trans. Fuzzy Syst., 29(2021), No. 6, p. 1654.
|
[8] |
Y.F. Yan and Z.M. Lü, Multi-objective quality control method for cold-rolled products oriented to customized requirements, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1332. doi: 10.1007/s12613-021-2292-4
|
[9] |
J. Lee, J. Singh, M. Azamfar, and K.Y. Sun, Industrial AI: a systematic framework for AI in industrial applications, China Mech. Eng., 31(2020), No. 1, p. 37. doi: 10.3969/j.issn.1004-132X.2020.01.005
|
[10] |
R. Boom, Research Fund for Coal and Steel RFCS: A European success story, Ironmaking Steelmaking., 41(2014), No. 9, p. 647. doi: 10.1179/0301923314Z.000000000313
|
[11] |
S.W. Wu, J. Yang, R.H. Zhang, and H. Ono, Prediction of endpoint sulfur content in KR desulfurization based on the hybrid algorithm combining artificial neural network with SAPSO, IEEE Access, 8(2020), p. 33778. doi: 10.1109/ACCESS.2020.2971517
|
[12] |
K.Y. Shin and H.C. Park, Smart manufacturing systems engineering for designing smart product-quality monitoring system in the industry 4.0, [in] 2019 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, 2020, p. 1693.
|
[13] |
Y. Luo, Progress of POSCO Smart Factory construction, China Steel Focus, 2021, No. 12, p. 51.
|
[14] |
G.D. Wang, Z.Y. Liu, D.H Zhang, and M.S. Chu, Transformation and development of materials science and technology and construction of iron and steel innovation infrastructure, J. Iron Steel Res., 33(2021), No. 10, p. 1003. doi: 10.13228/j.boyuan.issn1001-0963.20210053
|
[15] |
C. Xiao and L.H. Lyu, Application of full stack machine learning in intelligent manufacturing of steel process, Baosteel Technol., 2021, No. 2, p. 24.
|
[16] |
Z.N. Li, Prediction and Optimization of Key Process Parameters of Large Blast Furnace Based on Big Data Mining [Dissertation], Northeastern University, Shenyang, 2020, p. 27.
|
[17] |
Y.S. Qi, M.S. Chu, J. Tang, Q. Shi, M.Y. Wang and Z.Q. Liu, Research progress of blast furnace data governance based on big data technology, Metall. Ind. Autom., 47(2023), No. 1, p. 43. doi: 10.3969/j.issn.1000-7059.2023.01.005
|
[18] |
S.N. Zhang, Comprehensive Evaluation of Blast Furnace Conditions Based on the Combination of Expert Knowledge and Data [Dissertation], Inner Mongolia University of Science and Technology, Baotou, 2020, p. 9.
|
[19] |
S.F. Chen, X.J. Liu, H.Y. Li, X.P. Bu, Q. Lyu, and F.L. Liu, Preliminary study on missing data processing of blast furnace ironmaking, China Metall., 31(2021), No. 2, p. 17. doi: 10.13228/j.boyuan.issn1006-9356.20200358
|
[20] |
J. Zhao, S.F. Chen, X.J. Liu, X. Li, H.Y. Li, and Q. Lyu, Outlier screening for ironmaking data on blast furnaces, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1001. doi: 10.1007/s12613-021-2301-7
|
[21] |
Z.Q. Zheng, Comparative Research of Data Filling Algorithms under Different Missing Mechanisms [Dissertation], Guizhou Minzu University, Guizhou, 2022, p. 39.
|
[22] |
Z.N. Li, M.S. Chu, Z.G. Liu, and B.F. Li, Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm, J. Northeastern Univ. Nat. Sci., 41(2020), No. 9, p. 1262. doi: 10.12068/j.issn.1005-3026.2020.09.008
|
[23] |
X. Liu, W.J. Zhang, Q. Shi, and L. Zhou, Operation parameters optimization of blast furnaces based on data mining and cleaning, J. Northeastern Univ. Nat. Sci., 41(2020), No. 8, p. 1153. doi: 10.12068/j.issn.1005-3026.2020.08.015
|
[24] |
C.Y. Deng, K.H. Wu, Y.P. Tan, and J. Hu, Outlier detection method based on multivariate time series segmentation clustering, Comput. Eng. Des., 41(2020), No. 11, p. 6. doi: 10.16208/j.issn1000-7024.2020.11.020
|
[25] |
C.X. Zhao, H.F. Xue, L. Wang, and Y. Wan, Water consumption abnormal data detection method based on isolation forest, J. China Inst. Water Res. Hydropower Res., 18(2020), No. 1, p. 9. doi: 10.13244/j.cnki.jiwhr.2020.01.004
|
[26] |
M. Bessec, Revisiting the transitional dynamics of business cycle phases with mixed-frequency data, Econ. Rev., 38(2019), No. 7, p. 711. doi: 10.1080/07474938.2017.1397837
|
[27] |
G. Ye, Research on the coincident index and economic fluctuations in China with mixed-frequency data, Stat. Res., 32(2015), No. 08, p. 17. doi: 10.19343/j.cnki.11-1302/c.2015.08.003
|
[28] |
C.L. Gao, Blast Furnace Smelting Process Optimization of Pulverized Coal Injection Based on Data-driven [Dissertation], Inner Mongolia University of Science & Technology, Baotou, 2015, p. 22.
|
[29] |
J.Q. An, Y.F. Chen, and M. Wu, A prediction method for carbon monoxide utilization ratio of blast furnace based on improved support vector regression, CIESC J., 66(2015), No. 1, p. 206. doi: 10.11949/j.issn.0438-1157.20141482
|
[30] |
Y.T. Wang, J.Z. Zhao, X.P. Gong, and G. Yang, A Method for Predicting Silicon Content of Molten Iron in Blast Furnace with Uncertain Information of Time Delay, Chinese Patent, Appl. 110309608A, 2019.
|
[31] |
F. Ming. Research on Application of Association Rule Mining to Blast Furnace Situation Prediction [Dissertation], Chongqing University, Chongqing, 2009, p. 30.
|
[32] |
C.L. Huang, Y.L. Tang, X.F. Zhang, and Y.Z. Chu, Prediction and simulation of silicon content in blast furnace for PCA and PSO-ELM, Comput. Simul., 37(2020), No. 02, p. 398. doi: 10.3969/j.issn.1006-9348.2020.02.081
|
[33] |
D.F. Liu, J. Zhang, and Q. Fu, Deep learning prediction modeling of blast furnace condition based on principal component analysis of temperature field, Metall. Ind. Autom., 45(2021), No. 3, p. 42. doi: 10.3969/j.issn.1000-7059.2021.03.006
|
[34] |
C.C. Meng, J.S. Zeng, and W.J. Li, Blast furnace fault detection based on KPCA, J. China Univ. Metrol., 23(2012), No. 04, p. 332. doi: 10.3969/j.issn.1004-1540.2012.04.003
|
[35] |
Z.Q. Li, J.Q. Du, B. Nin, W.P. Xiong, C.Y. Huang, and H. Li, Summary of feature selection methods, Comput. Eng. Appl., 55(2019), No. 24, p. 10. doi: 10.3778/j.issn.1002-8331.1909-0066
|
[36] |
Z.Y. Wang, D.H. Jiang, X.D. Wang, J.L. Zhang, and Z.J. Liu, Prediction of blast furnace hot metal temperature based on support vector regression and extreme learning machine, Chin. J. Eng., 43(2021), No. 4, p. 569. doi: 10.13374/j.issn2095-9389.2020.05.28.001
|
[37] |
D.W. Jiang, Z.Y. Wang, J.L. Zhang, D.J. Jiang, K.J. Li, and F.L. Liu, Machine learning modeling of gas utilization rate in blast furnace, JOM, 74(2022), No. 4, p. 1633. doi: 10.1007/s11837-022-05166-7
|
[38] |
Q.J. Shi, F. Pan, F.H. Long, et al., A review of feature selection methods, Microelectron. Comput., 39(2022), No. 03, p. 1. doi: 10.19304/j.issn1000-7180.2021.1033
|
[39] |
C.J. Zhang, B.B. Chen, C. Zhou, and X.G. Yin, Feature selection algorithm based on multi-objective bare-bones particle swarm optimization, J. Comput. Appl., 38(2018), No. 11, p. 3156. doi: 10.11772/j.issn.1001-9081.2018041358
|
[40] |
B. Wutzl, K. Leibnitz, F. Rattay, M. Kronbichler, M. Murata, and S.M. Golaszewski, Genetic algorithms for feature selection when classifying severe chronic disorders of consciousness, PLoS One, 14(2019), No. 7, art. No. e0219683. doi: 10.1371/journal.pone.0219683
|
[41] |
Y.R. Li and C.J. Yang, Domain knowledge based explainable feature construction method and its application in ironmaking process, Eng. Appl. Artif. Intell., 100(2021), art. No. 104197. doi: 10.1016/j.engappai.2021.104197
|
[42] |
Y. Deng and Q. Lyu, Establishment of evaluation and prediction system of comprehensive state based on big data technology in a commercial blast furnace, ISIJ Int., 60(2020), No. 5, p. 898. doi: 10.2355/isijinternational.ISIJINT-2019-545
|
[43] |
G.M. Cui, T. Sun, and Y. Zhang, Application of support vector machine (SVM) in prediction of molten iron temperature in blast furnace, Control Eng. China, 20(2013), No. 5, p. 809. doi: 10.14107/j.cnki.kzgc.2013.05.006
|
[44] |
S. Li, J.C. Chang, M.S. Chu, J. Li, and A.M. Yang, A blast furnace coke ratio prediction model based on fuzzy cluster and grid search optimized support vector regression, Appl. Intell., 52(2022), No. 12, p. 13533. doi: 10.1007/s10489-022-03234-8
|
[45] |
J. Zhao, H.W. Li, X.J. Liu, X. Li, H.Y. Li, and Q. lyu, Prediction model of permeability index based on Xgboost, China Metall., 31(2021), No. 03, p. 22. doi: 10.13228/j.boyuan.issn1006-9356.20200704
|
[46] |
Z.K. Cheng, X.L. Yan, W.S. Cheng, and Z.X. Yuan, Study on coke quality prediction model based on gradient lifting decision tree, J. Chongqing Technol. Bus. Univ. Nat. Sci. Ed., 38(2021), No. 5, p. 55. doi: 10.16055/j.issn.1672-058X.2021.0005.009
|
[47] |
S. Liu, Q. Lyu, X.J. Liu, Y.Q. Sun, and X.S. Zhang, A prediction system of burn through point based on gradient boosting decision tree and decision rules, ISIJ Int., 59(2019), No. 12, p. 2156. doi: 10.2355/isijinternational.ISIJINT-2019-059
|
[48] |
X.J. Liu, Y. Deng, X. Li, L.Y. Hao, and E.H. Liu, Prediction of silicon content in hot metal of blast furnace based on bid data technology, China Metall., 31(2021), No. 2, p. 10. doi: 10.13228/j.boyuan.issn1006-9356.20200391
|
[49] |
Z.Q. Cui, Y. Han, A.M. Yang, Y.Z. Zhang, and S. Zhang, Intelligent prediction of silicon content in hot metal of blast furnace based on neural network time series model, Metall. Ind. Autom., 45(2021), No. 3, p. 51. doi: 10.3969/j.issn.1000-7059.2021.03.007
|
[50] |
X.J. Bao, S.H. Weng, G. Chen, J. Wang, X. Chen, and J.C. Xie, Comparison on multi-step prediction of blast furnace gas generation based on LSTM/SARIMA time series model, Iron Steel, 57(2022), No. 9, p. 166. doi: 10.13228/j.boyuan.issn0449-749x.20220166
|
[51] |
J. Zhu, Research of Selective Ensemble Learning and Its Application [Dissertation], East China Jiaotong University, Nanchang, 2016, p. 6.
|
[52] |
L. Shi, W.H. Liu, F.J. Cao, and J.J. Wang, Combined forecast of blast furnace gas utilization rate based on CEEMDAN-SVM-LSTM, China Meas. Test, 49(2023), No. 1, p. 86.
|
[53] |
D.T. Zhao, Research on Prediction of Key Parameters of Blast Furnace Smelting and Classification Method of Furnace Condition [Dissertation], Tianjin University of Technology, Tianjin, 2018, p. 23.
|
[54] |
F.Y. Huang, L. Huang, M. Fu, et al., A New Anterograde Evaluation Method for Blast Furnace, Chinese Patent, Appl. 109063358A, 2018.
|
[55] |
H.Y. Li, X.P. Bu, X.J. Liu, et al., Evaluation and prediction of blast furnace status based on big data platform of ironmaking and data mining, ISIJ Int., 61(2021), No. 1, p. 108. doi: 10.2355/isijinternational.ISIJINT-2020-249
|
[56] |
X.C. Zhang, Z. Song, D.F. Zhou, and C. Fan, Research on index ranking of blast furnace parameter rules based on PCA algorithms, [in] Metallurgical Automation and Intelligence, Proceedings of the 12th China Iron and Steel Annual Conference, Beijing, 2019, p. 34.
|
[57] |
X.X. Jiang, Research on the Stability Evaluation for Blast Furnace Condition with Data Mining Method [Dissertation], Northeastern University, Shenyang, 2020, p. 33.
|
[58] |
X.D. Ren, Research on Stability Evaluation Method of Blast Furnace Condition [Dissertation], Northeastern University, Shenyang, 2019, p. 43.
|
[59] |
J.P. Li, C.C. Hua, and X.P. Guan, Modeling research for smelting mechanism blast furnace smelting process based on operation data and expert knowledge, J. Shanghai Jiaotong Univ., 52(2018), No. 10, p. 1142. doi: 10.16183/j.cnki.jsjtu.2018.10.002
|
[60] |
J.Q. An, H.C. Chen, M. Wu, W.Y. He, and J.H. She, Two-layer fault diagnosis method for blast furnace based on evidence-conflict reduction on multiple time scales, Contr. Eng. Pract., 101(2020), art. No. 104474. doi: 10.1016/j.conengprac.2020.104474
|
[61] |
B. Wang, Y.M. Chen, W.G. Song, and S.B. Wang, Practice of furnace working status stabilization in Baosteel’s No.1 BF, [in] Ironmaking and Raw Materials, Proceedings of the 12th China Iron and Steel Annual Conference, Beijing, 2019, p. 31.
|
[62] |
Y.P. Zheng, Measures to manage frequent fluctuations in furnace conditions at Jingtang’s No. 1 blast furnace, Ironmaking, 38(2019), No. 6, p. 36.
|
[63] |
Y. Cheng, Z.Y. Wang, and G.M. Zhou, Causes and countermeasures for the fluctuating furnace conditions of Xianggang’s new No. 3 blast furnace, Ironmaking, 39(2020), No. 1, p. 38.
|
[64] |
Y. Tian, G. Wang, J.Q. Su, and H. Bai, Research on optimization and regulation model of blast furnace parameters based on big data mining, Metall. Ind. Autom., 46(2022), No. 5, p. 65.
|
[65] |
Z.W. Zhang, X.R. Che, and H.B. Zhang, Establishment and validation of multi-objective optimization model of blast furnace, Chin. J. Process Eng., 17(2017), No. 1, p. 178. doi: 10.12034/j.issn.1009-606X.216267
|
[66] |
A. Dong, Study on Prediction of Parameters and Optimization Control Model of Blast Furnace Ironmaking [Dissertation], Tianjin University of Technology, Tianjin, 2017, p. 37.
|
[67] |
Q. Zhang, T.H. Yao, J.J. Cai, and F.M. Shen, On the multi-objective optimal model of blast furnace ironmaking process and its application, J. Northeastern Univ. Nat. Sci., 32(2011), No. 2, p. 270. doi: 10.3969/j.issn.1005-3026.2011.02.029
|