留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1140
  • HTML全文浏览量:  242
  • PDF下载量:  18
  • 被引次数: 0
Hongyuan Liu, Jialei Wu, Siqi Wang, Jing Duan,  and Huiping Shao, Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2236-2244. https://doi.org/10.1007/s12613-023-2638-1
Cite this article as:
Hongyuan Liu, Jialei Wu, Siqi Wang, Jing Duan,  and Huiping Shao, Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2236-2244. https://doi.org/10.1007/s12613-023-2638-1
引用本文 PDF XML SpringerLink
研究论文

Sr2+ 对3D凝胶打印 Sr3-xMgx(PO4)2骨组织工程用复合支架的影响


  • 通讯作者:

    邵慧萍    E-mail: shaohp@ustb.edu.cn

文章亮点

  • (1)通过3D凝胶打印技术制备了多孔磷酸锶镁(Sr3−xMgx(PO4)2) (x = 2, 2.5, 3)复合支架。
  • (2)与纯Mg3(PO4)2支架相比,掺杂了锶的支架具有更优异的综合性能。
  • (3)小鼠胚胎成骨前体细胞(MC3T3-E1细胞)实验显示细胞粘附在支架表面并显著增殖。
  • 磷酸镁(Mg3(PO4)2)是一种被广泛用于骨水泥的修复材料,具有良好的生物相容性和降解性,其降解释放的镁离子可促进骨细胞的生长和骨髓基质细胞的矿化。掺杂微量元素是提高磷酸镁生物活性的有效方法,锶(Sr)是一种存在于骨骼中的微量元素,锶离子的持续释放不仅能诱导成骨细胞分化以促进骨形成,还能抑制破骨细胞活性以减少骨吸收。此外,锶的掺入还可以改善磷酸镁的机械性能。因此通过在磷酸镁中掺杂锶离子并调整其含量,可有效提升骨组织工程支架的综合性能。本研究采用3D凝胶打印(3DGP)的方法成功制备了多孔磷酸锶镁(Sr3−xMgx(PO4)2) (x = 2, 2.5, 3) 复合支架,该工艺结合了直接喷墨打印技术和凝胶工艺,可以根据患者的需要个性化定制产品,同时具有成本低、原材料应用范围广等优点。研究结果表明,Sr0.5Mg2.5(PO4)2支架具有良好的抗压强度和体外降解率,烧结得到的Sr0.5Mg2.5(PO4)2支架孔隙率为(54.69 ± 2.64)%,抗压强度为6.34 MPa。在模拟体液中浸泡6周后,Sr1.0Mg2.0(PO4)2支架的失重率为6.96%,pH值在7.5至8.61之间变化,在人体可接受范围内。初步生物实验表明,MC3T3-E1细胞在Sr1.0Mg2.0(PO4)2支架表面具有良好的粘附性和增殖性。与纯Mg3(PO4)2支架相比,掺杂了锶的支架具有更为优异的综合性能,说明Sr1.0Mg2.0(PO4)2复合支架可用于骨组织工程。
  • Research Article

    Effect of Sr2+ on 3D gel-printed Sr3−xMgx(PO4)2 composite scaffolds for bone tissue engineering

    + Author Affiliations
    • Porous magnesium strontium phosphate (Sr3−xMgx(PO4)2) (x = 2, 2.5, 3) composite scaffolds were successfully prepared by three dimension gel-printing (3DGP) method in this study. The results show that Sr0.5Mg2.5(PO4)2 scaffolds had good compressive strength, and Sr1.0Mg2.0(PO4)2 scaffolds had good degradation rate in vitro. The weight loss rate of Sr1.0Mg2.0(PO4)2 scaffolds soaked in simulated body fluid (SBF) or 6 weeks was 6.96%, and pH value varied between 7.50 and 8.61, which was within the acceptable range of human body. Preliminary biological experiment shows that MC3T3-E1 cells had good adhesion and proliferation on the surface of Sr3−xMgx(PO4)2 scaffolds. Compared with pure Mg3(PO4)2 scaffolds, strontium doped scaffolds had excellent comprehensive properties, which explain that Sr3−xMgx(PO4)2 composite scaffolds can be used for bone tissue engineering.
    • loading
    • [1]
      C. Wang, W. Huang, Y. Zhou, et al., 3D printing of bone tissue engineering scaffolds, Bioact. Mater., 5(2020), No. 1, p. 82. doi: 10.1016/j.bioactmat.2020.01.004
      [2]
      H.S. Ma, C. Feng, J. Chang, and C.T. Wu, 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy, Acta Biomater., 79(2018), p. 37. doi: 10.1016/j.actbio.2018.08.026
      [3]
      P.Y. Zhao, Y.Q. Liu, T.A. Li, et al., 3D printed titanium scaffolds with ordered TiO2 nanotubular surface and mesoporous bioactive glass for bone repair, Prog. Nat. Sci., 30(2020), No. 4, p. 502. doi: 10.1016/j.pnsc.2020.08.009
      [4]
      R. Han, F. Buchanan, L. Ford, M. Julius, and P.J. Walsh, A comparison of the degradation behaviour of 3D printed PDLGA scaffolds incorporating bioglass or biosilica, Mater. Sci. Eng. C, 120(2021), art. No. 111755. doi: 10.1016/j.msec.2020.111755
      [5]
      M. Touri, F. Moztarzadeh, N.A. Abu Osman, M.M. Dehghan, and M. Mozafari, 3D-printed biphasic calcium phosphate scaffolds coated with an oxygen generating system for enhancing engineered tissue survival, Mater. Sci. Eng. C, 84(2018), p. 236. doi: 10.1016/j.msec.2017.11.037
      [6]
      J. Babilotte, B. Martin, V. Guduric, et al., Development and characterization of a PLGA-HA composite material to fabricate 3D-printed scaffolds for bone tissue engineering, Mater. Sci. Eng. C, 118(2021), art. No. 111334. doi: 10.1016/j.msec.2020.111334
      [7]
      S. Liu, L.N. Mo, G.Y. Bi, et al., DLP 3D printing porous β-tricalcium phosphate scaffold by the use of acrylate/ceramic composite slurry, Ceram. Int., 47(2021), No. 15, p. 21108. doi: 10.1016/j.ceramint.2021.04.114
      [8]
      A.C. Zou, H.X. Liang, C. Jiao, et al., Fabrication and properties of CaSiO3/Sr3(PO4)2 composite scaffold based on extrusion deposition, Ceram. Int., 47(2021), No. 4, p. 4783. doi: 10.1016/j.ceramint.2020.10.048
      [9]
      N. Kunwong, N. Tangjit, K. Rattanapinyopituk, et al., Optimization of poly (lactic-co-glycolic acid)-bioactive glass composite scaffold for bone tissue engineering using stem cells from human exfoliated deciduous teeth, Arch. Oral Biol., 123(2021), art. No. 105041. doi: 10.1016/j.archoralbio.2021.105041
      [10]
      L. Zhang, G.J. Yang, B.N. Johnson, and X.F. Jia, Three-dimensional (3D) printed scaffold and material selection for bone repair, Acta Biomater., 84(2019), p. 16. doi: 10.1016/j.actbio.2018.11.039
      [11]
      M.A. Haque and B. Chen, Research progresses on magnesium phosphate cement: A review, Constr. Build. Mater., 211(2019), p. 885. doi: 10.1016/j.conbuildmat.2019.03.304
      [12]
      K. Sarkar, M. Rahaman, S. Agarwal, et al., Degradability and in vivo biocompatibility of doped magnesium phosphate bioceramic scaffolds, Mater. Lett., 259(2020), art. No. 126892. doi: 10.1016/j.matlet.2019.126892
      [13]
      D. Pierantozzi, A. Scalzone, S. Jindal, et al., 3D printed Sr-containing composite scaffolds: Effect of structural design and material formulation towards new strategies for bone tissue engineering, Compos. Sci. Technol., 191(2020), art. No. 108069. doi: 10.1016/j.compscitech.2020.108069
      [14]
      N.Y. Zhong and L.P. Wang, Research progress in the osteogenetic mechanism of strontium, West China J. Stomatology, 38(2020), No. 6, p. 697. doi: 10.7518/hxkq.2020.06.016
      [15]
      S. Meininger, S. Mandal, A. Kumar, J. Groll, B. Basu, and U. Gbureck, Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds, Acta Biomater., 31(2016), p. 401. doi: 10.1016/j.actbio.2015.11.050
      [16]
      F.P. He, T.L. Lu, X.B. Fang, et al., Study on MgxSr3−x(PO4)2 bioceramics as potential bone grafts, Colloids Surf. B, 175(2019), p. 158. doi: 10.1016/j.colsurfb.2018.11.085
      [17]
      N. Golafshan, E. Vorndran, S. Zaharievski, et al., Tough magnesium phosphate-based 3D-printed implants induce bone regeneration in an equine defect model, Biomaterials, 261(2020), art. No. 120302. doi: 10.1016/j.biomaterials.2020.120302
      [18]
      S. Meininger, C. Moseke, K. Spatz, et al., Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds, Mater. Sci. Eng. C, 98(2019), p. 1145. doi: 10.1016/j.msec.2019.01.053
      [19]
      S.Y. Li, X.M. Pu, X.C. Chen, X.M. Liao, Z.B. Huang, and G.F. Yin, A novel bi-phase Sr-doped magnesium phosphate/calcium silicate composite scaffold and its osteogenesis promoting effect, Ceram. Int., 44(2018), No. 14, p. 16237. doi: 10.1016/j.ceramint.2018.06.009
      [20]
      K. Sarkar, V. Kumar, K.B. Devi, D. Ghosh, S.K. Nandi, and M. Roy, Effects of Sr doping on biodegradation and bone regeneration of magnesium phosphate bioceramics, Materialia, 5(2019), art. No. 100211. doi: 10.1016/j.mtla.2019.100211
      [21]
      F.P. He, T.L. Lu, X.B. Fang, et al., Effects of strontium amount on the mechanical strength and cell-biological performance of magnesium-strontium phosphate bioceramics for bone regeneration, Mater. Sci. Eng. C, 112(2020), art. No. 110892. doi: 10.1016/j.msec.2020.110892
      [22]
      N. Abbasi, S. Hamlet, R.M. Love, and N.T. Nguyen, Porous scaffolds for bone regeneration, J. Sci.:Adv. Mater. Devices, 5(2020), No. 1, p. 1.
      [23]
      M.V. Varma, B. Kandasubramanian, and S.M. Ibrahim, 3D printed scaffolds for biomedical applications, Mater. Chem. Phys., 255(2020), art. No. 123642. doi: 10.1016/j.matchemphys.2020.123642
      [24]
      H. Jodati, B. Yılmaz, and Z. Evis, A review of bioceramic porous scaffolds for hard tissue applications: Effects of structural features, Ceram. Int., 46(2020), No. 10, p. 15725. doi: 10.1016/j.ceramint.2020.03.192
      [25]
      X.Y. Ren, H.P. Shao, T. Lin, and H. Zheng, 3D gel-printing—An additive manufacturing method for producing complex shape parts, Mater. Des., 101(2016), p. 80. doi: 10.1016/j.matdes.2016.03.152
      [26]
      H.P. Shao, J.Z. He, T. Lin, Z.N. Zhang, Y.M. Zhang, and S.W. Liu, 3D gel-printing of hydroxyapatite scaffold for bone tissue engineering, Ceram. Int., 45(2019), No. 1, p. 1163. doi: 10.1016/j.ceramint.2018.09.300
      [27]
      Z.N. Zhang, H.P. Shao, T. Lin, Y.M. Zhang, J.Z. He, and L.H. Wang, 3D gel printing of porous calcium silicate scaffold for bone tissue engineering, J. Mater. Sci., 54(2019), No. 14, p. 10430. doi: 10.1007/s10853-019-03626-1
      [28]
      Y.M. Zhang, H.P. Shao, T. Lin, et al., Effect of Ca/P ratios on porous calcium phosphate salt bioceramic scaffolds for bone engineering by 3D gel-printing method, Ceram. Int., 45(2019), No. 16, p. 20493. doi: 10.1016/j.ceramint.2019.07.028
      [29]
      C.G. Chen, J.L. Wu, S.Q. Wang, and H.P. Shao, Effect of Fe3O4 concentration on 3D gel-printed Fe3O4/CaSiO3 composite scaffolds for bone engineering, Ceram. Int., 47(2021), No. 15, p. 21038. doi: 10.1016/j.ceramint.2021.04.105
      [30]
      Z.N. Zhang, T. Lin, H.P. Shao, et al., Effect of different dopants on porous calcium silicate composite bone scaffolds by 3D gel-printing, Ceram. Int., 46(2020), No. 1, p. 325. doi: 10.1016/j.ceramint.2019.08.266
      [31]
      Y.H. Shen, W. Liu, C.Y. Wen, et al., Bone regeneration: Importance of local pH–strontium-doped borosilicate scaffold, J. Mater. Chem., 22(2012), No. 17, p. 8662. doi: 10.1039/c2jm16141a
      [32]
      H.P. Shao, Y.M. Zhang, T. Lin, et al., Effect of Mg2+ on porous MgxCa3−x(PO4)2 composite scaffolds for bone engineering by 3D gel-printing, J. Mater. Sci., 55(2020), No. 18, p. 7870. doi: 10.1007/s10853-020-04590-x
      [33]
      R. Moonesi Rad, D. Atila, Z. Evis, D. Keskin, and A. Tezcaner, Development of a novel functionally graded membrane containing boron-modified bioactive glass nanoparticles for guided bone regeneration, J. Tissue Eng. Regen. Med., 13(2019), No. 8, p. 1331. doi: 10.1002/term.2877

    Catalog


    • /

      返回文章
      返回