Cite this article as:

Brett Holmberg, and Liang Cui, Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp.1474-1489. https://dx.doi.org/10.1007/s12613-023-2640-7
Brett Holmberg, and Liang Cui, Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp.1474-1489. https://dx.doi.org/10.1007/s12613-023-2640-7
引用本文 PDF XML SpringerLink

诱导养护压力下纤维增强水泥基复合材料界面过渡区的多物理过程以及其对膏体充填技术发展的启示:综述

摘要: 本文旨在深入探讨纤维-基质界面过渡区诱导养护压力的形成机理及其对纤维增强水泥基复合材料效能的控制作用。通过对最新研究成果的深入剖析,建立了诱导养护压力(即外部加载条件)、热–水–力–化多场耦合过程(即内在控制机制)以及过渡区行为(即材料行为)之间的联系。在力学过程中,诱导养护压力会改变过渡区应力状态,增强了其多裂纹行为,从而改善了过渡区的稳定性。从渗流过程来看,诱导养护压力能够提高过渡区的渗透性,造成有效应力减弱,并强化了基质与过渡区之间的保水能力的差异。在传热过程中,诱导养护压力会在过渡区中产生陡峭的温度梯度,从而影响温度变化过程,并加剧过渡区微裂纹的萌生。在水化反应过程中,诱导养护压力可以提高水化反应的动力学过程,进而在过渡区中形成更多的水化产物。本综述提供了深入理解纤维增强水泥基复合材料中过渡区行为的一个新视角,并且基于这些发现,提出了热–水–力–化多场耦合建模的方法、多场参量的确定手段及多场耦合研究的未来展望。这些建议对于膏体充填技术的发展具有指导意义,对于纤维增强水泥基复合材料的研究与应用也具有推动作用。

 

Multiphysics processes in the interfacial transition zone of fiber-reinforced cementitious composites under induced curing pressure and implications for mine backfill materials: A critical review

Abstract: The mesoscale fiber–matrix interfacial transition zone (FM-ITZ) under induced curing pressure plays a key role in the effectiveness of fiber reinforcement and the engineering application of fiber-reinforced cementitious composites (FRCCs). This critical review establishes the link among induced curing pressure (i.e., external loading condition), multiphysics processes (i.e., internal governing mechanism), and interface behavior (i.e., material behavior) for FRCC materials through analysis of the state-of-the-art research findings on the FM-ITZ of FRCC materials. The following results are obtained. For the mechanical process, the induced curing pressure changes the stress state and enhances multicracking behavior, which can strengthen the FM-ITZ. For the hydraulic process, the strengthened seepage of the FM-ITZ under induced curing pressure weakens the effective stress and exaggerates the deficiency in water retention capacity between the bulk matrix and the FM-ITZ. For the thermal process, the induced curing pressure causes a steep temperature gradient in the FM-ITZ and thus influences the temperature evolution and thermally-induced microcracks in the FM-ITZ. For the chemical process, the induced curing pressure enhances hydration kinetics and results in the formation of additional hydration products in the FM-ITZ. Moreover, recommendations are proposed on the basis of findings from this review to facilitate the implementation of fiber reinforcement in cemented paste backfill technology.

 

/

返回文章
返回