Cite this article as: |
Jinxiang You, Jing Wang, Mingjun Rao, Xin Zhang, Jun Luo, Zhiwei Peng, and Guanghui Li, An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2169-2181. https://doi.org/10.1007/s12613-023-2643-4 |
饶明军 E-mail: mj.rao@csu.edu.cn
李光辉 E-mail: liguangh@csu.edu.cn
Supplementary Information-10.1007s12613-023-2643-4.docx |
[1] |
E.R. Burkhardt and K. Matos, Boron reagents in process chemistry: Excellent tools for selective reductions, Chem. Rev., 106(2006), No. 7, p. 2617. doi: 10.1021/cr0406918
|
[2] |
N.A. El-Alaily and R.M. Mohamed, Effect of irradiation on some optical properties and density of lithium borate glass, Mater. Sci. Eng. B, 98(2003), No. 3, p. 193. doi: 10.1016/S0921-5107(02)00587-1
|
[3] |
C. Mermer and H. Şengül, Addressing potential resource scarcity for boron mineral: A system dynamics perspective, J. Clean. Prod., 270(2020), art. No. 122192. doi: 10.1016/j.jclepro.2020.122192
|
[4] |
V. Thakur, A. Singh, R. Punia, S. Dahiya, and L. Singh, Structural properties and electrical transport characteristics of modified lithium borate glass ceramics, J. Alloys Compd., 696(2017), p. 529. doi: 10.1016/j.jallcom.2016.11.230
|
[5] |
X. Zhang, G.H. Li, J.X. You, et al., Extraction of boron from ludwigite ore: Mechanism of soda-ash roasting of lizardite and szaibelyite, Minerals, 9(2019), No. 9, art. No. 533. doi: 10.3390/min9090533
|
[6] |
M.X. Zhu, X.R. Zhou, H. Zhang, L. Wang, and H.Y. Sun, International trade evolution and competition prediction of boron ore: Based on complex network and link prediction, Resour. Policy, 82(2023), art. No. 103542. doi: 10.1016/j.resourpol.2023.103542
|
[7] |
S. Jiao, H.Y. Zheng, Y.Y. Qu, B.Q. Liu, and B.B. Han, Supply and demand situation of global boron resources, Nat. Resour. Inf., 2020, No. 10, p. 85.
|
[8] |
J. An and X.X. Xue, Life cycle environmental impact assessment of borax and boric acid production in China, J. Clean. Prod., 66(2014), p. 121. doi: 10.1016/j.jclepro.2013.10.020
|
[9] |
Z.P. Zhu, J.X. You, X. Zhang, et al., Recycling excessive alkali from reductive soda ash roasted ludwigite ore: Toward a zero-waste approach, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5317. doi: 10.1021/acssuschemeng.0c00582
|
[10] |
L. Ye, Z.W. Peng, R. Tian, et al., A novel process for highly efficient separation of boron and iron from ludwigite ore based on low-temperature microwave roasting, Powder Technol., 410(2022), art. No. 117848. doi: 10.1016/j.powtec.2022.117848
|
[11] |
Y. Li, J.T. Gao, X. Lan, and Z.C. Guo, A novel method for efficient recovery of boron from boron-bearing iron concentrate: Mineral phase transformation and low-temperature separation via super-gravity, Miner. Eng., 189(2022), art. No. 107899. doi: 10.1016/j.mineng.2022.107899
|
[12] |
X. Zhang, G.H. Li, M.J. Rao, et al., Co-conversion mechanisms of boron and iron components of ludwigite ore during reductive soda-ash roasting, Metals, 10(2020), No. 11, art. No. 1514. doi: 10.3390/met10111514
|
[13] |
G.H. Li, L. Fang, X. Zhang, et al., Utilization of the MgO-rich residue originated from ludwigite ore: Hydrothermal synthesis of MHSH whiskers, Minerals, 7(2017), No. 8, art. No. 138. doi: 10.3390/min7080138
|
[14] |
Y.J. Liu, T. Jiang, W.J. Huang, C.H. Liu, J.P. Wang, and X.X. Xue, High temperature dielectric properties of ludwigite and its effect on microwave heating process, J. Microw. Power Electromagn. Energy, 53(2019), No. 3, p. 195. doi: 10.1080/08327823.2019.1643650
|
[15] |
G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron-iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000. doi: 10.1007/s12613-018-1650-3
|
[16] |
G.J. Cheng, X.Z. Liu, H. Yang, X.X. Xue, and L.J. Li, Sintering and smelting property investigations of ludwigite, Processes, 10(2022), No. 1, art. No. 159. doi: 10.3390/pr10010159
|
[17] |
S.L. Liu, C.M. Cui, and X.P. Zhang, Pyrometallurgical separation of boron from iron in ludwigite ore, ISIJ Int., 38(1998), No. 10, p. 1077. doi: 10.2355/isijinternational.38.1077
|
[18] |
G. Wang, Q.G. Xue, and J.S. Wang, Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 282. doi: 10.1016/S1003-6326(16)64116-X
|
[19] |
Y.Z. Xu, T. Jiang, H.Y. Gao, W.Y. Chen, and X.X. Xue, The changes of surface properties and enhancement of B2O3 leaching ratio of boron concentrate via wet ball milling, Powder Technol., 326(2018), p. 89. doi: 10.1016/j.powtec.2017.12.056
|
[20] |
G.H. Li, B.J. Liang, M.J. Rao, Y.B. Zhang, and T. Jiang, An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore, Miner. Eng., 56(2014), p. 57. doi: 10.1016/j.mineng.2013.10.030
|
[21] |
B.J. Liang, G.H. Li, M.J. Rao, Z.W. Peng, Y.B. Zhang, and T. Jiang, Water leaching of boron from soda-ash-activated ludwigite ore, Hydrometallurgy, 167(2017), p. 101. doi: 10.1016/j.hydromet.2016.11.004
|
[22] |
J.X. You, J. Wang, J. Luo, Z.W. Peng, M.J. Rao, and G.H. Li, A facile route to the value-added utilization of ludwigite ore: Boron extraction and MxMg1−xFe2O4 spinel ferrites preparation, J. Clean. Prod., 375(2022), art. No. 134206. doi: 10.1016/j.jclepro.2022.134206
|
[23] |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, GB/T 6730.65-2009: Iron Ores—Determination of Total Iron Content—Titanium (III) Chloride Reduction Potassium Dichromate Titration Methods (Routine Method), General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, and Standardization Administration of the People’s Republic of China, Beijing, 2009.
|
[24] |
S. Bhagyaraj, M.A. Al-Ghouti, P. Kasak, and I. Krupa, An updated review on boron removal from water through adsorption processes, Emergent Mater., 4(2021), No. 5, p. 1167. doi: 10.1007/s42247-021-00197-3
|
[25] |
M. Dolati, A.A. Aghapour, H. Khorsandi, and S. Karimzade, Boron removal from aqueous solutions by electrocoagulation at low concentrations, J. Environ. Chem. Eng., 5(2017), No. 5, p. 5150. doi: 10.1016/j.jece.2017.09.055
|
[26] |
F.L. Theiss, G.A. Ayoko, and R.L. Frost, Removal of boron species by layered double hydroxides: A review, J. Colloid Interface Sci., 402(2013), p. 114. doi: 10.1016/j.jcis.2013.03.051
|
[27] |
Y.Q. Zhou, C.H. Fang, Y. Fang, and F.Y. Zhu, Polyborates in aqueous borate solution: A Raman and DFT theory investigation, Spectrochim. Acta A Mol. Biomol. Spectrosc., 83(2011), No. 1, p. 82. doi: 10.1016/j.saa.2011.07.081
|
[28] |
Y.Q. Zhou, Y. Fang, C.H. Fang, F.Y. Zhu, H.W. Ge, and Q.L. Chen, Solution structure of energy stored system I: Aqua-$ \mathrm{B}(\mathrm{O}\mathrm{H}{)}_{4}^{-} $: A DFT, car-parrinello molecular dynamics, and Raman study, J. Phys. Chem. B, 117(2013), No. 39, p. 11709. doi: 10.1021/jp405708e
|
[29] |
F.Y. Zhu, W.Q. Zhang, H.Y. Liu, et al., Micro-Raman and density functional theory analyses of ion pairs in concentrated sodium tetrahydroxyborate droplets, Spectrochim. Acta A, 224(2020), art. No. 117308. doi: 10.1016/j.saa.2019.117308
|
[30] |
J.T. Kloprogge, D. Wharton, L. Hickey, and R.L. Frost, Infrared and Raman study of interlayer anions $ {\mathrm{C}\mathrm{O}}_{3}^{2-} $, $ {\mathrm{N}\mathrm{O}}_{3}^{-} $, $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ and $ {\mathrm{C}\mathrm{l}\mathrm{O}}_{4}^{-} $ in Mg/Al-hydrotalcite, Am. Mineral., 87(2002), No. 5-6, p. 623. doi: 10.2138/am-2002-5-604
|
[31] |
S.J. Palmer, R.L. Frost, G. Ayoko, and T. Nguyen, Synthesis and Raman spectroscopic characterisation of hydrotalcite with$ {\mathrm{C}\mathrm{O}}_{3}^{2-} $ and (MoO4)2− anions in the interlayer, J. Raman Spectrosc., 39(2008), p. 395. doi: 10.1002/jrs.1838
|
[32] |
W. Chen, L.Z. Ouyang, J.W. Liu, et al., Hydrolysis and regeneration of sodium borohydride (NaBH4) – A combination of hydrogen production and storage, J. Power Sources, 359(2017), p. 400. doi: 10.1016/j.jpowsour.2017.05.075
|
[33] |
L.Z. Ouyang, W. Chen, J.W. Liu, M. Felderhoff, H. Wang, and M. Zhu, Enhancing the regeneration process of consumed NaBH4 for hydrogen storage, Adv. Energy Mater., 7(2017), No. 19, art. No. 1700299. doi: 10.1002/aenm.201700299
|
[34] |
C.L. Qin, L.Z. Ouyang, H. Wang, J.W. Liu, H.Y. Shao, and M. Zhu, Regulation of high-efficient regeneration of sodium borohydride by magnesium-aluminum alloy, Int. J. Hydrogen Energy, 44(2019), No. 55, p. 29108. doi: 10.1016/j.ijhydene.2019.05.010
|
[35] |
H. Zhong, L.Z. Ouyang, M.Q. Zeng, et al., Realizing facile regeneration of spent NaBH4 with Mg–Al alloy, J. Mater. Chem. A, 7(2019), No. 17, p. 10723. doi: 10.1039/C9TA00769E
|
[36] |
I.K. Battisha, A. EI Beyally, S.A. EI Mongy, and A.M. Nahrawi, Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol–gel route, J. Sol–Gel Sci. Technol., 41(2007), p. 129. doi: 10.1007/s10971-006-0520-z
|
[37] |
A. Fidalgo and L.M. Ilharco, The defect structure of sol-gel-derived silica/polytetrahydrofuran hybrid films by FTIR, J. Non Cryst. Solids, 283(2001), No. 1-3, p. 144. doi: 10.1016/S0022-3093(01)00418-5
|
[38] |
I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, and D.E. MacPhee, Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O, Cem. Concr. Res., 41(2011), No. 9, p. 923. doi: 10.1016/j.cemconres.2011.05.006
|
[39] |
S.A. Devi, D. Philip, and G. Aruldhas, Infrared, polarized Raman, and SERS spectra of borax, J. Solid State Chem., 113(1994), No. 1, p. 157. doi: 10.1006/jssc.1994.1354
|
[40] |
A. Winterstein-Beckmann, D. Möncke, D. Palles, E.I. Kamitsos, and L. Wondraczek, Structure and properties of orthoborate glasses in the Eu2O3–(Sr,Eu)O–B2O3 quaternary, J. Phys. Chem. B, 119(2015), No. 7, p. 3259. doi: 10.1021/jp5120465
|