Cite this article as: |
Ning Fan, Zhihui Li, Yanan Li, Xiwu Li, Yongan Zhang, and Baiqing Xiong, Residual stress with asymmetric spray quenching for thick aluminum alloy plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2200-2211. https://doi.org/10.1007/s12613-023-2645-2 |
李志辉 E-mail: lzh@grinm.com
李亚楠 E-mail: liyanan@grinm.com
[1] |
T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys, Mater. Des., 56(2014), p. 862. doi: 10.1016/j.matdes.2013.12.002
|
[2] |
A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W.S. Miller, Recent development in aluminium alloys for aerospace applications, Mater. Sci. Eng. A, 280(2000), No. 1, p. 102. doi: 10.1016/S0921-5093(99)00674-7
|
[3] |
A. Azarniya, A.K. Taheri, and K.K. Taheri, Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective, J. Alloys Compd., 781(2019), p. 945. doi: 10.1016/j.jallcom.2018.11.286
|
[4] |
P.A. Rometsch, Y. Zhang, and S. Knight, Heat treatment of 7xxx series aluminium alloys—Some recent developments, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2003. doi: 10.1016/S1003-6326(14)63306-9
|
[5] |
G. Sha and A. Cerezo, Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050), Acta Mater., 52(2004), No. 15, p. 4503. doi: 10.1016/j.actamat.2004.06.025
|
[6] |
G.T. Liang and I. Mudawar, Review of spray cooling - Part 1: Single-phase and nucleate boiling regimes, and critical heat flux, Int. J. Heat Mass Transfer, 115(2017), p. 1174.
|
[7] |
G.T. Liang and I. Mudawar, Review of spray cooling - Part 2: High temperature boiling regimes and quenching applications, Int. J. Heat Mass Transfer, 115(2017), p. 1206.
|
[8] |
J.S. Robinson, D.A. Tanner, and C.E. Truman, 50th anniversary article: The origin and management of residual stress in heat-treatable aluminium alloys, Strain, 50(2014), No. 3, p. 185. doi: 10.1111/str.12091
|
[9] |
J. Guo, H.Y. Fu, B. Pan, and R.K. Kang, Recent progress of residual stress measurement methods: A review, Chin. J. Aeronaut., 34(2021), No. 2, p. 54. doi: 10.1016/j.cja.2019.10.010
|
[10] |
N.S. Rossini, M. Dassisti, K.Y. Benyounis, and A.G. Olabi, Methods of measuring residual stresses in components, Mater. Des., 35(2012), p. 572. doi: 10.1016/j.matdes.2011.08.022
|
[11] |
R. Pan, T. Pirling, J.H. Zheng, J.G. Lin, and C.M. Davies, Quantification of thermal residual stresses relaxation in AA7xxx aluminium alloy through cold rolling, J. Mater. Process. Technol., 264(2019), p. 454. doi: 10.1016/j.jmatprotec.2018.09.034
|
[12] |
M.K. Khan, M.E. Fitzpatrick, S.V. Hainsworth, A.D. Evans, and L. Edwards, Application of synchrotron X-ray diffraction and nanoindentation for the determination of residual stress fields around scratches, Acta Mater., 59(2011), No. 20, p. 7508. doi: 10.1016/j.actamat.2011.08.034
|
[13] |
K. Tanaka, The cosα method for X-ray residual stress measurement using two-dimensional detector, Mech. Eng. Rev., 6(2019), No. 1, art. No. 18-00378. doi: 10.1299/mer.18-00378
|
[14] |
S. Nervi and B.A. Szabó, On the estimation of residual stresses by the crack compliance method, Comput. Meth. Appl. Mech. Eng., 196(2007), No. 37-40, p. 3577. doi: 10.1016/j.cma.2006.10.037
|
[15] |
C. Liu and X. Yi, Residual stress measurement on AA6061-T6 aluminum alloy friction stir butt welds using contour method, Mater. Des., 46(2013), p. 366. doi: 10.1016/j.matdes.2012.10.030
|
[16] |
R.G. Treuting and W.T. Read, A mechanical determination of biaxial residual stress in sheet materials, J. Appl. Phys., 22(1951), No. 2, p. 130. doi: 10.1063/1.1699913
|
[17] |
R. Kopun, L. Škerget, M. Hriberšek, D.S. Zhang, B. Stauder, and D. Greif, Numerical simulation of immersion quenching process for cast aluminium part at different pool temperatures, Appl. Therm. Eng., 65(2014), No. 1-2, p. 74. doi: 10.1016/j.applthermaleng.2013.12.058
|
[18] |
Y.B. Dong, W.Z. Shao, L.X. Lu, J.T. Jiang, and L. Zhen, Numerical simulation of residual stress in an Al–Cu alloy block during quenching and aging, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4928. doi: 10.1007/s11665-015-1758-9
|
[19] |
G.S. Zhang, C.H. Mao, J. Wang, N. Fan, and T.T. Guo, Numerical analysis and experimental studies on the residual stress of W/2024Al composites, Materials, 12(2019), No. 17, art. No. 2746. doi: 10.3390/ma12172746
|
[20] |
C. Şimşir and C.H. Gür, 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution, J. Mater. Process. Technol., 207(2008), No. 1-3, p. 211. doi: 10.1016/j.jmatprotec.2007.12.074
|
[21] |
W.C. Jiang, W. Woo, G.B. An, and J.U. Park, Neutron diffraction and finite element modeling to study the weld residual stress relaxation induced by cutting, Mater. Des., 51(2013), p. 415. doi: 10.1016/j.matdes.2013.04.053
|
[22] |
S.R. Yazdi, D. Retraint, and J. Lu, Study of through-thickness residual stress by numerical and experimental techniques, J. Strain Anal. Eng. Des., 33(1998), No. 6, p. 449. doi: 10.1243/0309324981513147
|
[23] |
N. Murugan and R. Narayanan, Finite element simulation of residual stresses and their measurement by contour method, Mater. Des., 30(2009), No. 6, p. 2067. doi: 10.1016/j.matdes.2008.08.041
|
[24] |
D.A. Tanner and J.S. Robinson, Residual stress prediction and determination in 7010 aluminum alloy forgings, Exp. Mech., 40(2000), No. 1, p. 75. doi: 10.1007/BF02327551
|
[25] |
D.A. Tanner and J.S. Robinson, Time transient validation of residual stress prediction models for aluminium alloy quenching, Mater. Sci. Technol., 32(2016), No. 14, p. 1533. doi: 10.1080/02670836.2016.1195122
|
[26] |
N. Chobaut, D. Carron, S. Arsène, P. Schloth, and J.M. Drezet, Quench induced residual stress prediction in heat treatable 7xxx aluminium alloy thick plates using Gleeble interrupted quench tests, J. Mater. Process. Technol., 222(2015), p. 373. doi: 10.1016/j.jmatprotec.2015.03.029
|
[27] |
J. Liu, Z.Y. Du, J.L. Su, et al., Effect of quenching residual stress on precipitation behaviour of 7085 aluminium alloy, J. Mater. Sci. Technol., 132(2023), p. 154. doi: 10.1016/j.jmst.2022.06.010
|
[28] |
Y.X. Cai, L.H. Zhan, Y.Q. Xu, et al., Stress relaxation aging behavior and constitutive modelling of AA7150-T7751 under different temperatures, initial stress levels and pre-strains, Metals, 9(2019), No. 11, art. No. 1215. doi: 10.3390/met9111215
|
[29] |
N. Fan, B.Q. Xiong, Z.H. Li, et al., Heat transfer behavior during water spray quenching of 7xxx aluminum alloy plates, J. Therm. Sci. Eng. Appl., 14(2022), No. 4, art. No. 041013. doi: 10.1115/1.4051824
|
[30] |
Y.N. Li, Y.A. Zhang, X.W. Li, et al., Effects of heat transfer coefficients on quenching residual stresses in 7055 aluminum alloy, Mater. Sci. Forum, 877(2016), p. 647. doi: 10.4028/www.scientific.net/MSF.877.647
|