留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(9)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  562
  • HTML全文浏览量:  183
  • PDF下载量:  34
  • 被引次数: 0
Yuji Bai, Zhixiu Wang, Bo Jiang, Mengqi Li, Cong Zhu, Xiaotong Gu,  and Hai Li, Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2212-2223. https://doi.org/10.1007/s12613-023-2652-3
Cite this article as:
Yuji Bai, Zhixiu Wang, Bo Jiang, Mengqi Li, Cong Zhu, Xiaotong Gu,  and Hai Li, Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2212-2223. https://doi.org/10.1007/s12613-023-2652-3
引用本文 PDF XML SpringerLink
研究论文

2297-T87铝锂合金厚板力学性能的各向异性


  • 通讯作者:

    李海    E-mail: Lehigh_73@163.com

文章亮点

  • (1) 系统地研究了晶粒形貌、晶体织构、第二相粒子等对2297-T87铝锂合金厚板拉伸性能各向异性的影响规律
  • (2) 进一步明确2297-T87铝锂合金厚板力学性能各向异性的影响因素
  • (3) 总结并提出了晶粒形貌是影响厚板拉伸性能各向异性的主要因素
  • 对于铝锂合金厚板,其强度、韧性和疲劳裂纹扩展抗力等方面呈现出一定程度的各向异性和厚度方向的不均匀性,厚板力学性能各向异性给合金的使用带来许多局限,在工程设计时只能以性能较低方向作为设计依据,2297铝锂合金是第三代铝锂合金,以厚板的形式广泛应用于飞机和航空航天结构部件,为进一步明确2297-T87铝锂合金厚板力学性能各向异性的影响因素,本文通过拉伸试验、光学显微镜(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)和透射电子显微镜(TEM)分析了2297-T87铝锂合金厚板在不同厚度位置和不同方向的拉伸性能。结果表明,合金的极限抗拉强度(UTS)和屈服强度(YS)从1/8T位置到1/2T位置先降低后增加,而断后伸长率(Ef)逐渐降低,在相同厚度位置沿轧制方向(RD)的值高于沿横向(TD)的值。从合金的1/8T位置到3/8T位置,沿TD的UTS和YS值高于沿RD的UTS值和YS值。在合金的1/2T位置,沿RD的UTS、YS和Ef最高,而沿法线方向(ND)的UTS、YS和Ef最低。微观结构观察进一步表明,拉伸性能的各向异性与晶粒形貌、晶体织构、第二相粒子和Li原子偏聚有关,晶粒形貌是厚板同一厚度位置拉伸性能各向异性的主要影响因素。
  • Research Article

    Anisotropy of mechanical properties of 2297-T87 Al–Li alloy thick plates

    + Author Affiliations
    • The tensile properties of 2297-T87 Al–Li alloy thick plates at different thickness position and in different direction were analyzed via tensile testing, optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and transmission electron microscopy (TEM). Results indicated that the ultimate tensile strength (UTS) and yield strength (YS) of the alloy decreased firstly and then increased from the 1/8T position to the 1/2T position, whereas elongation to failure (Ef) decreased gradually such that its value along the rolling direction (RD) was higher than those along the transverse direction (TD) at the same thickness position. From the 1/8T position to the 3/8T position of the alloy, the UTS and YS along the TD were higher than those along the RD. At the 1/2T position of the alloy, the UTS, YS, and Ef along the RD were the highest, whereas those along the normal direction (ND) were the lowest. Microstructural observations further revealed that the anisotropy of tensile properties was related to grain morphology, crystal texture, second-phase particles, and Li atom segregation.
    • loading
    • [1]
      A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review, J. Adv. Res., 10(2018), p. 49. doi: 10.1016/j.jare.2017.12.004
      [2]
      R.J. Rioja and J. Liu, The evolution of Al–Li base products for aerospace and space applications, Metall. Mater. Trans. A, 43(2012), No. 9, p. 3325. doi: 10.1007/s11661-012-1155-z
      [3]
      A. Deschamps, C. Sigli, T. Mourey, F. de Geuser, W. Lefebvre, and B. Davo, Experimental and modelling assessment of precipitation kinetics in an Al–Li–Mg alloy, Acta Mater., 60(2012), No. 5, p. 1917. doi: 10.1016/j.actamat.2012.01.010
      [4]
      J. Han, Z.X. Zhu, H.J. Li, and C. Gao, Microstructural evolution, mechanical property and thermal stability of Al–Li 2198-T8 alloy processed by high pressure torsion, Mater. Sci. Eng. A, 651(2016), p. 435. doi: 10.1016/j.msea.2015.10.112
      [5]
      X.Y. Zhang, T. Huang, W.X. Yang, R.S. Xiao, Z. Liu, and L. Li, Microstructure and mechanical properties of laser beam-welded AA2060 Al–Li alloy, J. Mater. Process. Technol., 237(2016), p. 301. doi: 10.1016/j.jmatprotec.2016.06.021
      [6]
      J. Goebel, T. Ghidini, and A.J. Graham, Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy, Mater. Sci. Eng. A, 673(2016), p. 16. doi: 10.1016/j.msea.2016.07.013
      [7]
      Y. Yang, F. Ma, H.B. Hu, Q.M. Zhang, and X.W. Zhang, Microstructure evolution of 2195 Al–Li alloy subjected to high-strain-rate deformation, Mater. Sci. Eng. A, 606(2014), p. 299. doi: 10.1016/j.msea.2014.03.118
      [8]
      J.C. Williams and E.A. Starke, Progress in structural materials for aerospace systems, Acta Mater., 51(2003), No. 19, p. 5775. doi: 10.1016/j.actamat.2003.08.023
      [9]
      R.J. Rioja, Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications, Mater. Sci. Eng. A, 257(1998), No. 1, p. 100. doi: 10.1016/S0921-5093(98)00827-2
      [10]
      D.J. Chakrabarti, H. Weiland, B.A. Cheney, and J.T. Staley, Through thickness property variations in 7050 plate, Mater. Sci. Forum, 217-222(1996), p. 1085. doi: 10.4028/www.scientific.net/MSF.217-222.1085
      [11]
      K.K. Cho, Y.H. Chung, C.W. Lee, S.I. Kwun, and M.C. Shin, Effects of grain shape and texture on the yield strength anisotropy of Al–Li alloy sheet, Scripta Mater., 40(1999), No. 6, p. 651. doi: 10.1016/S1359-6462(98)00481-3
      [12]
      A. Bois-Brochu, C. Blais, F.A.T. Goma, D. Larouche, J. Boselli, and M. Brochu, Characterization of Al–Li 2099 extrusions and the influence of fiber texture on the anisotropy of static mechanical properties, Mater. Sci. Eng. A, 597(2014), p. 62. doi: 10.1016/j.msea.2013.12.060
      [13]
      P.F. Wu, Y.L. Deng, J. Zhang, S.T. Fan, and X.M. Zhang, The effect of inhomogeneous microstructures on strength and fatigue properties of an Al–Cu–Li thick plate, Mater. Sci. Eng. A, 731(2018), p. 1. doi: 10.1016/j.msea.2018.06.033
      [14]
      D. Wang, C. Gao, H.Y. Luo, Y.H. Yang, and Y. Ma, Texture evolution behavior and anisotropy of 2A97 Al–Li alloy during recrystallization at elevated temperature, Rare Met., (2018), p. 1.
      [15]
      T.Z. Zhao, L. Jin, Y. Xu, and S.H. Zhang, Anisotropic yielding stress of 2198 Al–Li alloy sheet and mechanisms, Mater. Sci. Eng. A, 771(2020), art. No. 138572. doi: 10.1016/j.msea.2019.138572
      [16]
      X. Xu, M. Hao, J. Chen, et al., Influence of microstructural and crystallographic inhomogeneity on tensile anisotropy in thick-section Al–Li–Cu–Mg plates, Mater. Sci. Eng. A, 829(2022), art. No. 142135. doi: 10.1016/j.msea.2021.142135
      [17]
      J. Ma, Q. Wang, T.Y. Zhang, H. Cao, Y.B. Yang, and Z.M. Zhang, Effect of natural aging time on tensile and fatigue anisotropy of extruded 7075 Al alloy, J. Mater. Res. Technol., 18(2022), p. 4683. doi: 10.1016/j.jmrt.2022.04.151
      [18]
      L. Chen, S.W. Yuan, D.M. Kong, G.Q. Zhao, Y.Y. He, and C.S. Zhang, Influence of aging treatment on the microstructure, mechanical properties and anisotropy of hot extruded Al–Mg–Si plate, Mater. Des., 182(2019), art. No. 107999. doi: 10.1016/j.matdes.2019.107999
      [19]
      G. Huang, Z.H. Li, L.M. Sun, et al., Fatigue crack growth behavior of 2624-T39 aluminum alloy with different grain sizes, Rare Met., 40(2021), No. 9, p. 2523. doi: 10.1007/s12598-020-01496-0
      [20]
      Z.H. Li, B.Q. Xiong, Y.A. Zhang, B.H. Zhu, F. Wang, and H.W. Liu, Investigation on strength, toughness and microstructure of an Al–Zn–Mg–Cu alloy pre-stretched thick plates in various ageing tempers, J. Mater. Process. Technol., 209(2009), No. 4, p. 2021. doi: 10.1016/j.jmatprotec.2008.04.052
      [21]
      D. Dumont, A. Deschamps, and Y. Brechet, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Mater. Sci. Eng. A, 356(2003), No. 1-2, p. 326. doi: 10.1016/S0921-5093(03)00145-X
      [22]
      K. Zhao, J.H. Liu, M. Yu, and S.M. Li, Through-thickness inhomogeneity of precipitate distribution and pitting corrosion behavior of Al–Li alloy thick plate, Trans. Nonferrous Met. Soc. China, 29(2019), No. 9, p. 1793. doi: 10.1016/S1003-6326(19)65087-9
      [23]
      L. Meng and L. Tian, Stress concentration sensitivity of Al–Li based alloys with various contents of impurities and cerium addition, Mater. Sci. Eng. A, 323(2002), No. 1-2, p. 239. doi: 10.1016/S0921-5093(01)01398-3
      [24]
      D.D. Risanti, M. Yin, P.E.J.R.D. del Castillo, and S. van der Zwaag, A systematic study of the effect of interrupted ageing conditions on the strength and toughness development of AA6061, Mater. Sci. Eng. A, 523(2009), No. 1-2, p. 99. doi: 10.1016/j.msea.2009.06.044
      [25]
      A. Albedah, B.B. Bouiadjra, S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 83. doi: 10.1007/s12613-019-1896-4
      [26]
      A.W. Thompson, The relation between changes in ductility and in ductile fracture topography: Control by microvoid nucleation, Acta Metall., 31(1983), No. 10, p. 1517. doi: 10.1016/0001-6160(83)90148-7
      [27]
      H. Li, Q.Z. Mao, Z.X. Wang, F.F. Miao, B.J. Fang, and Z.Q. Zheng, Enhancing mechanical properties of Al–Mg–Si–Cu sheets by solution treatment substituting for recrystallization annealing before the final cold-rolling, Mater. Sci. Eng. A, 620(2015), p. 204. doi: 10.1016/j.msea.2014.10.012
      [28]
      C.S. Lee, R.E. Smallman, and B.J. Duggan, Effect of rolling geometry and surface friction on cube texture formation, Mater. Sci. Technol., 10(1994), No. 2, p. 149. doi: 10.1179/mst.1994.10.2.149
      [29]
      G.J. Li, M.X. Guo, Y. Wang, C.H. Zheng, J.S. Zhang, and L.Z. Zhuang, Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 740. doi: 10.1007/s12613-019-1778-9
      [30]
      O. Engler, X.W. Kong, and K. Lücke, Recrystallisation textures of particle-containing Al–Cu and Al–Mn single crystals, Acta Mater., 49(2001), No. 10, p. 1701. doi: 10.1016/S1359-6454(01)00087-8
      [31]
      M.J. Starink and S.C. Wang, A model for the yield strength of overaged Al–Zn–Mg–Cu alloys, Acta Mater., 51(2003), No. 17, p. 5131. doi: 10.1016/S1359-6454(03)00363-X
      [32]
      N. Gao, M.J. Starink, L. Davin, A. Cerezo, S.C. Wang, and P.J. Gregson, Microstructure and precipitation in Al–Li–Cu–Mg–(Mn, Zr) alloys, Mater. Sci. Technol., 21(2005), No. 9, p. 1010. doi: 10.1179/174328405X27034
      [33]
      D.D. Lu, J.F. Li, H. Ning, et al., Effects of microstructure on tensile properties of AA2050-T84 Al−Li alloy, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1189. doi: 10.1016/S1003-6326(21)65571-1
      [34]
      K.S. Kumar, S.A. Brown, and J.R. Pickens, Microstructural evolution during aging of an AlCuLiAgMgZr alloy, Acta Mater., 44(1996), No. 5, p. 1899. doi: 10.1016/1359-6454(95)00319-3
      [35]
      Y.X. Wang, G.Q. Zhao, X. Xu, X.X. Chen, and W.D. Zhang, Microstructures and mechanical properties of spray deposited 2195 Al–Cu–Li alloy through thermo-mechanical processing, Mater. Sci. Eng. A, 727(2018), p. 78. doi: 10.1016/j.msea.2018.04.116
      [36]
      B.X. Xie, L. Huang, J.H. Xu, et al., Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy, Mater. Sci. Eng. A, 832(2022), art. No. 142394. doi: 10.1016/j.msea.2021.142394
      [37]
      W.B. Lei, X.T. Liu, W.M. Wang, Q. Sun, Y.Z. Xu, and J.Z. Cui, On the influences of Li on the microstructure and properties of hypoeutectic Al–7Si alloy, J. Alloys Compd., 729(2017), p. 703. doi: 10.1016/j.jallcom.2017.04.295
      [38]
      D. Tsivoulas, J.D. Robson, C. Sigli, and P.B. Prangnell, Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys, Acta Mater., 60(2012), No. 13-14, p. 5245. doi: 10.1016/j.actamat.2012.06.012
      [39]
      S.W. Duan, K. Matsuda, T. Wang, and Y. Zou, Microstructures and mechanical properties of a cast Al–Cu–Li alloy during heat treatment procedure, Rare Met., 40(2021), No. 7, p. 1897. doi: 10.1007/s12598-020-01481-7
      [40]
      X.X. Zhang, X.R. Zhou, T. Hashimoto, et al., Corrosion behaviour of 2A97-T6 Al–Cu–Li alloy: The influence of non-uniform precipitation, Corros. Sci., 132(2018), p. 1. doi: 10.1016/j.corsci.2017.12.010
      [41]
      G. Yang, Z. Li, Y. Yuan, and Q. Lei, Microstructure, mechanical properties and electrical conductivity of Cu–0.3Mg–0.05Ce alloy processed by equal channel angular pressing and subsequent annealing, J. Alloys Compd., 640(2015), p. 347. doi: 10.1016/j.jallcom.2015.03.218
      [42]
      I.L. Dillamore, Factors affecting the rolling recrystallisation textures in F.C.C. metals, Acta Metall., 12(1964), No. 9, p. 1005. doi: 10.1016/0001-6160(64)90072-0
      [43]
      R.E. Smallman and D. Green, The dependence of rolling texture on stacking fault energy, Acta Metall., 12(1964), No. 2, p. 145. doi: 10.1016/0001-6160(64)90182-8
      [44]
      S. Birosca, F.D. Gioacchino, S. Stekovic, and M. Hardy, A quantitative approach to study the effect of local texture and heterogeneous plastic strain on the deformation micromechanism in RR1000 nickel-based superalloy, Acta Mater., 74(2014), p. 110. doi: 10.1016/j.actamat.2014.04.039
      [45]
      S. Sun, B.L. Adams, and W.E. King, Observations of lattice curvature near the interface of a deformed aluminium bicrystal, Philos. Mag. A, 80(2000), No. 1, p. 9. doi: 10.1080/01418610008212038
      [46]
      Q. Zhao, Z.Y. Liu, Y.C. Hu, F.D. Li, C. Luo, and S.S. Li, Texture effect on fatigue crack propagation in aluminium alloys: An overview, Mater. Sci. Technol., 35(2019), No. 15, p. 1789. doi: 10.1080/02670836.2019.1651954
      [47]
      Z. Cvijović, M. Vratnica, and M. Rakin, Micromechanical modelling of fracture toughness in overaged 7000 alloy forgings, Mater. Sci. Eng. A, 434(2006), No. 1-2, p. 339. doi: 10.1016/j.msea.2006.07.018
      [48]
      K. Wen, B.Q. Xiong, Y.A. Zhang, et al., Aging precipitation characteristics and tensile properties of Al–Zn–Mg–Cu alloys with different additional Zn contents, Rare Met., 40(2021), No. 8, p. 2160. doi: 10.1007/s12598-020-01495-1
      [49]
      A. Zindal, J. Jain, R. Prasad, et al., Effect of heat treatment variables on the formation of precipitate free zones (PFZs) in Mg–8Al–0.5Zn alloy, Mater. Charact., 136(2018), p. 175. doi: 10.1016/j.matchar.2017.12.018
      [50]
      S.P. Lynch, A.R. Wilson, and R.T. Byrnes, Effects of ageing treatments on resistance to intergranular fracture of 8090 Al–Li alloy plate, Mater. Sci. Eng. A, 172(1993), No. 1-2, p. 79. doi: 10.1016/0921-5093(93)90428-H

    Catalog


    • /

      返回文章
      返回