Cite this article as:

Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu, and Luzheng Chen, Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp.2157-2168. https://dx.doi.org/10.1007/s12613-023-2654-1
Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu, and Luzheng Chen, Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp.2157-2168. https://dx.doi.org/10.1007/s12613-023-2654-1
引用本文 PDF XML SpringerLink

利用方铅矿与黄铜矿表面酸蚀特性的差异进行分离

摘要: 方铅矿(PbS)和黄铜矿(CuFeS2)都是具有良好可浮性的硫化物矿物。因此,通过普通浮选有效地分离它们是具有挑战性的。提出了一种表面硫酸腐蚀结合浮选分离的新方法,成功地实现了方铅矿和黄铜矿的高效分离。接触角测试结果表明,腐蚀后方铅矿的表面接触角显著降低,表面可浮性受到选择性抑制。腐蚀后黄铜矿的接触角和可浮性基本不受影响。扫描电镜结果证实,硫酸腐蚀导致方铅矿表面形成致密的氧化层,而黄铜矿表面保持不变。X射线光电子能谱结果表明,腐蚀方铅矿表面的S2−被氧化为 \mathrmS\mathrmO_4^2- 。在方铅矿表面形成一层亲水的PbSO4,导致方铅矿可浮性急剧下降。而腐蚀后黄铜矿的表面则生成了新的疏水CuS2、CuS和Cu1−xFe1−yS2−z,仍具有良好的可浮性。最后,通过腐蚀-浮选分离实验进一步验证了理论分析结果。在适宜的腐蚀酸度、腐蚀温度和腐蚀时间下,浮选分离方铅矿-黄铜矿混合物。本研究概述了一种新的方法,为难选铜铅硫化物矿石的高效分离提供了潜在的应用前景。

 

Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics

Abstract: Galena (PbS) and chalcopyrite (CuFeS2) are sulfide minerals that exhibit good floatability characteristics. Thus, efficiently separating them via common flotation is challenging. Herein, a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed, and the efficient separation of galena and chalcopyrite was successfully realized. Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena. Meanwhile, the contact angle and floatability of corroded chalcopyrite remained almost unaffected. Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface, whereas the chalcopyrite surface remained unaltered. X-ray photoelectron spectroscopy results showed that the chemical state of S2− on the surface of corroded galena was oxidized to \;\mathrmS\mathrmO_4^2- . A layer of hydrophilic PbSO4 was formed on the surface, leading to a sharp decrease in galena floatability. Meanwhile, new hydrophobic CuS2, CuS, and Cu1−xFe1−yS2−z species exhibiting good floatability were generated on the chalcopyrite surface. Finally, theoretical analysis results were further verified by corrosion–flotation separation experiments. The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity, corrosion temperature, and corrosion time. A novel approach has been outlined in this study, providing potential applications in the efficient separation of refractory copper–lead sulfide ore.

 

/

返回文章
返回