留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(15)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  1231
  • HTML全文浏览量:  235
  • PDF下载量:  42
  • 被引次数: 0
Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu,  and Luzheng Chen, Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2157-2168. https://doi.org/10.1007/s12613-023-2654-1
Cite this article as:
Haiyun Xie, Jialing Chen, Pei Zhang, Likun Gao, Dianwen Liu,  and Luzheng Chen, Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2157-2168. https://doi.org/10.1007/s12613-023-2654-1
引用本文 PDF XML SpringerLink
研究论文

利用方铅矿与黄铜矿表面酸蚀特性的差异进行分离


  • 通讯作者:

    谢海云    E-mail: xiehaiyun@kust.edu.cn

    张培    E-mail: 2267902456@qq.com

文章亮点

  • (1) 提出了一种高效分离方铅矿和黄铜矿的腐蚀—浮选新方法;
  • (2) 方铅矿和黄铜矿在高酸性介质中表面形成钝化膜;
  • (3) 分析了方铅矿和黄铜矿钝化层的性质;
  • (4) 探讨了腐蚀条件对方铅矿与黄铜矿分离效率的影响。
  • 方铅矿(PbS)和黄铜矿(CuFeS2)都是具有良好可浮性的硫化物矿物。因此,通过普通浮选有效地分离它们是具有挑战性的。提出了一种表面硫酸腐蚀结合浮选分离的新方法,成功地实现了方铅矿和黄铜矿的高效分离。接触角测试结果表明,腐蚀后方铅矿的表面接触角显著降低,表面可浮性受到选择性抑制。腐蚀后黄铜矿的接触角和可浮性基本不受影响。扫描电镜结果证实,硫酸腐蚀导致方铅矿表面形成致密的氧化层,而黄铜矿表面保持不变。X射线光电子能谱结果表明,腐蚀方铅矿表面的S2−被氧化为$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $。在方铅矿表面形成一层亲水的PbSO4,导致方铅矿可浮性急剧下降。而腐蚀后黄铜矿的表面则生成了新的疏水CuS2、CuS和Cu1−xFe1−yS2−z,仍具有良好的可浮性。最后,通过腐蚀-浮选分离实验进一步验证了理论分析结果。在适宜的腐蚀酸度、腐蚀温度和腐蚀时间下,浮选分离方铅矿-黄铜矿混合物。本研究概述了一种新的方法,为难选铜铅硫化物矿石的高效分离提供了潜在的应用前景。
  • Research Article

    Separation of galena and chalcopyrite using the difference in their surface acid corrosion characteristics

    + Author Affiliations
    • Galena (PbS) and chalcopyrite (CuFeS2) are sulfide minerals that exhibit good floatability characteristics. Thus, efficiently separating them via common flotation is challenging. Herein, a new method of surface sulfuric acid corrosion in conjunction with flotation separation was proposed, and the efficient separation of galena and chalcopyrite was successfully realized. Contact angle test results showed a substantial decrease in surface contact angle and a selective inhibition of surface floatability for corroded galena. Meanwhile, the contact angle and floatability of corroded chalcopyrite remained almost unaffected. Scanning electron microscope results confirmed that sulfuric acid corrosion led to the formation of a dense oxide layer on the galena surface, whereas the chalcopyrite surface remained unaltered. X-ray photoelectron spectroscopy results showed that the chemical state of S2− on the surface of corroded galena was oxidized to $ \;{\mathrm{S}\mathrm{O}}_{4}^{2-} $. A layer of hydrophilic PbSO4 was formed on the surface, leading to a sharp decrease in galena floatability. Meanwhile, new hydrophobic CuS2, CuS, and Cu1−xFe1−yS2−z species exhibiting good floatability were generated on the chalcopyrite surface. Finally, theoretical analysis results were further verified by corrosion–flotation separation experiments. The galena–chalcopyrite mixture was completely separated via flotation separation under appropriate corrosion acidity, corrosion temperature, and corrosion time. A novel approach has been outlined in this study, providing potential applications in the efficient separation of refractory copper–lead sulfide ore.
    • loading
    • [1]
      W.Q. Qin, Q. Wei, F. Jiao, N. Li, P.P. Wang, and L.F. Ke, Effect of sodium pyrophosphate on the flotation separation of chalcopyrite from galena, Int. J. Min. Sci. Technol., 22(2012), No. 3, p. 345. doi: 10.1016/j.ijmst.2012.04.011
      [2]
      R.Q. Liu, H.Y. Lu, Z.J. Xu, et al., New insights into the reagent-removal mechanism of sodium sulfide in chalcopyrite and galena bulk flotation: A combined experimental and computational study, J. Mater. Res. Technol., 9(2020), No. 3, p. 5352. doi: 10.1016/j.jmrt.2020.03.062
      [3]
      R.A. Hayes and J. Ralston, The collectorless flotation and separation of sulphide minerals by Eh control, Int. J. Miner. Process., 23(1988), No. 1-2, p. 55. doi: 10.1016/0301-7516(88)90005-1
      [4]
      W. Chen, F.F. Chen, Z.H. Zhang, X.Z. Tian, X.Z. Bu, and Q.C. Feng, Investigations on the depressant effect of sodium alginate on galena flotation in different sulfide ore collector systems, Miner. Eng., 160(2021), art. No. 106705. doi: 10.1016/j.mineng.2020.106705
      [5]
      J.S. Yu, R.Q. Liu, L. Wang, W. Sun, H. Peng, and Y.H. Hu, Selective depression mechanism of ferric chromium lignin sulfonate for chalcopyrite–galena flotation separation, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 489. doi: 10.1007/s12613-018-1595-6
      [6]
      M.F. Liu, C.Y. Zhang, B. Hu, et al., Enhancing flotation separation of chalcopyrite and galena by the surface synergism between sodium sulfite and sodium lignosulfonate, Appl. Surf. Sci., 507(2020), art. No. 145042. doi: 10.1016/j.apsusc.2019.145042
      [7]
      Z.Y. Zhang, Y.M. Wang, G.Y. Liu, S. Liu, J. Liu, and X.L. Yang, Separation of chalcopyrite from galena with 3-amyl-4-amino-1,2,4-triazole-5-thione collector: Flotation behavior and mechanism, J. Ind. Eng. Chem., 92(2020), p. 210. doi: 10.1016/j.jiec.2020.09.007
      [8]
      R.Z. Liu, W.Q. Qin, F. Jiao, et al., Flotation separation of chalcopyrite from galena by sodium humate and ammonium persulfate, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 265. doi: 10.1016/S1003-6326(16)64113-4
      [9]
      D. Kocabağ and T. Güler, Two-liquid flotation of sulphides: An electrochemical approach, Miner. Eng., 20(2007), No. 13, p. 1246. doi: 10.1016/j.mineng.2007.05.005
      [10]
      C. Sui, J.A. Finch, J.E. Nesset, J. Kim, and S. Lajoie, Characterisation of the surfaces of galena and sphalerite in the presence of dithionite, Dev. Miner. Process., 13(2000), pp. C8b-15.
      [11]
      R. Houot and D. Duhamet, The use of sodium sulphite to improve the flotation selectivity between chalcopyrite and galena in a complex sulphide ore, Miner. Eng., 5(1992), No. 3-5, p. 343. doi: 10.1016/0892-6875(92)90216-V
      [12]
      X.M. Qiu, H.Y. Yang, G.B. Chen, S.P. Zhong, C.K. Cai, and B.B. Lan, Inhibited mechanism of carboxymethyl cellulose as a galena depressant in chalcopyrite and galena separation flotation, Miner. Eng., 150(2020), art. No. 106273. doi: 10.1016/j.mineng.2020.106273
      [13]
      D.W. Wang, F. Jiao, W.Q. Qin, and X.J. Wang, Effect of surface oxidation on the flotation separation of chalcopyrite and galena using sodium humate as depressant, Sep. Sci. Technol., 53(2018), No. 6, p. 961. doi: 10.1080/01496395.2017.1405042
      [14]
      Z.J. Piao, D.Z. Wei, and Z.L. Liu, Influence of sodium 2,3-dihydroxypropyl dithiocarbonate on floatability of chalcopyrite and galena, Trans. Nonferrous Met. Soc. China, 24(2014), No. 10, p. 3343. doi: 10.1016/S1003-6326(14)63475-0
      [15]
      S. Bulatovic, D.M. Wysouzil, and F.C. Bermejo, Development and introduction of a new copper/lead separation method in the raura plant (Peru), Miner. Eng., 14(2001), No. 11, p. 1483. doi: 10.1016/S0892-6875(01)00161-3
      [16]
      Q. Liu and J.S. Laskowski, The role of metal hydroxides at mineral surfaces in dextrin adsorption, II. Chalcopyrite-galena separations in the presence of dextrin, Int. J. Miner. Process., 27(1989), No. 1-2, p. 147. doi: 10.1016/0301-7516(89)90012-4
      [17]
      J.V. Ferrari, B.M. de Oliveira Silveira, J.J. Arismendi-Florez, et al., Influence of carbonate reservoir mineral heterogeneities on contact angle measurements, J. Pet. Sci. Eng., 199(2021), art. No. 108313. doi: 10.1016/j.petrol.2020.108313
      [18]
      Y.F. Fu, W.Z. Yin, X.S. Dong, et al., New insights into the flotation responses of brucite and serpentine for different conditioning times: Surface dissolution behavior, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1898. doi: 10.1007/s12613-020-2158-1
      [19]
      M. Vuckovac, M. Latikka, K. Liu, T. Huhtamäki, and R.H.A. Ras, Uncertainties in contact angle goniometry, Soft Matter, 15(2019), No. 35, p. 7089. doi: 10.1039/C9SM01221D
      [20]
      Z. Zhang, Y. Zhang, Y.L. Guo, X.M. Chen, and L. Chen, Impurity element analysis of aluminum hydride using PIXE, XPS and elemental analyzer technique, Nucl. Instrum. Methods Phys. Res. Sect. B, 488(2021), p. 1. doi: 10.1016/j.nimb.2020.11.018
      [21]
      W. Chen, Q.M. Feng, G.F. Zhang, and Q. Yang, Investigations on flotation separation of scheelite from calcite by using a novel depressant: Sodium phytate, Miner. Eng., 126(2018), p. 116. doi: 10.1016/j.mineng.2018.06.008
      [22]
      Q. Zhang, S.M. Wen, Q.C. Feng, and S. Zhang, Surface characterization of azurite modified with sodium sulfide and its response to flotation mechanism, Sep. Purif. Technol., 242(2020), art. No. 116760. doi: 10.1016/j.seppur.2020.116760
      [23]
      C. Greet and R.S.C. Smart, Diagnostic leaching of galena and its oxidation products with EDTA, Miner. Eng., 15(2002), No. 7, p. 515. doi: 10.1016/S0892-6875(02)00075-4
      [24]
      Y.L. Mikhlin, A.A. Karacharov, and M.N. Likhatski, Effect of adsorption of butyl xanthate on galena, PbS, and HOPG surfaces as studied by atomic force microscopy and spectroscopy and XPS, Int. J. Miner. Process., 144(2015), p. 81. doi: 10.1016/j.minpro.2015.10.004
      [25]
      B. McFadzean, D.G. Castelyn, and C.T. O’Connor, The effect of mixed thiol collectors on the flotation of galena, Miner. Eng., 36-38(2012), p. 211. doi: 10.1016/j.mineng.2012.03.027
      [26]
      L. Yu, Q.J. Liu, S.M. Li, J.S. Deng, B. Luo, and H. Lai, Depression mechanism involving Fe3+ during arsenopyrite flotation, Sep. Purif. Technol., 222(2019), p. 109. doi: 10.1016/j.seppur.2019.04.007
      [27]
      P. Nowak and K. Laajalehto, Oxidation of galena surface – An XPS study of the formation of sulfoxy species, Appl. Surf. Sci., 157(2000), No. 3, p. 101. doi: 10.1016/S0169-4332(99)00575-9
      [28]
      M. Kartal, F. Xia, D. Ralph, W.D.A. Rickard, F. Renard, and W. Li, Enhancing chalcopyrite leaching by tetrachloroethylene-assisted removal of sulphur passivation and the mechanism of jarosite formation, Hydrometallurgy, 191(2020), art. No. 105192. doi: 10.1016/j.hydromet.2019.105192
      [29]
      F.K. Mohammadabad, S. Hejazi, J.V. Khaki, and A. Babakhani, Mechanochemical leaching of chalcopyrite concentrate by sulfuric acid, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 380. doi: 10.1007/s12613-016-1247-7
      [30]
      A. Ghahremaninezhad, D.G. Dixon, and E. Asselin, Electrochemical and XPS analysis of chalcopyrite (CuFeS2) dissolution in sulfuric acid solution, Electrochim. Acta, 87(2013), p. 97. doi: 10.1016/j.electacta.2012.07.119
      [31]
      M. Sokić, B. Marković, and S. Stanković, Kinetics of chalcopyrite leaching by hydrogen peroxide in sulfuric acid, Metals, 9(2019), No. 11, art. No. 1173. doi: 10.3390/met9111173
      [32]
      J.A. Mielczarski, J.M. Cases, M. Alnot, and J.J. Ehrhardt, XPS characterization of chalcopyrite, tetrahedrite, and tennantite surface products after different conditioning. 1. aqueous solution at pH 10, Langmuir, 12(1996), No. 10, p. 2519. doi: 10.1021/la9505881
      [33]
      C. Klauber, A. Parker, W. van Bronswijk, and H. Watling, Sulphur speciation of leached chalcopyrite surfaces as determined by X-ray photoelectron spectroscopy, Int. J. Miner. Process., 62(2001), No. 1-4, p. 65. doi: 10.1016/S0301-7516(00)00045-4
      [34]
      J.N. Zhao, Electrochemical Study of Oxidative Passivation Process of Chalcopyrite Under Acidic Conditions [Dissertation], South China University of Technology, Guangzhou, 2013, p. 35.
      [35]
      S.R. Zhao, A Study on the Mechanical Activation Leaching of the Chalcopyrite and the Activation Mechanism [Dissertation], Northeastern University, Shenyang, 2016, p. 30.
      [36]
      T.G. Thai, The Oxidation and Passivation of Chalcopyrite [Dissertation], South China University of Technology, Guangzhou, 2015, p. 42.
      [37]
      Y.F. Zheng, X.M. Hua, Q. Xu, X.G. Lu, H.W. Cheng, and X.L. Zou, Leaching and electrochemical oxidation mechanism of chalcopyrite in sulfuric acid solution, Shanghai Metals, 41(2019), No. 3, p. 81.
      [38]
      C. Klauber, Fracture-induced reconstruction of a chalcopyrite (CuFeS2) surface, Surf. Interface Anal., 35(2003), No. 5, p. 415. doi: 10.1002/sia.1539
      [39]
      S.L. Harmer, J.E. Thomas, D. Fornasiero, and A.R. Gerson, The evolution of surface layers formed during chalcopyrite leaching, Geochim. Cosmochim. Acta, 70(2006), No. 17, p. 4392. doi: 10.1016/j.gca.2006.06.1555
      [40]
      H.Y. Xie, Y.H. Liu, B. Rao, et al., Selective passivation behavior of galena surface by sulfuric acid and a novel flotation separation method for copper-lead sulfide ore without collector and inhibitor, Sep. Purif. Technol., 267(2021), art. No. 118621. doi: 10.1016/j.seppur.2021.118621
      [41]
      H.Y. Xie, L.K. Gao, H.X. Dai, et al., A Mixed Concentrate Flotation Separation Method Based on Enhanced Suppression of Lead Sulfide, Chinese Patent, Appl. 10936140.8, 2018.

    Catalog


    • /

      返回文章
      返回