留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  920
  • HTML全文浏览量:  362
  • PDF下载量:  68
  • 被引次数: 0
Hongbo Ju, Moussa Athmani, Jing Luan, Abbas AL-Rjoub, Albano Cavaleiro, Talha Bin Yaqub, Abdelouahad Chala, Fabio Ferreira, and Filipe Fernandes, Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2459-2468. https://doi.org/10.1007/s12613-023-2655-0
Cite this article as:
Hongbo Ju, Moussa Athmani, Jing Luan, Abbas AL-Rjoub, Albano Cavaleiro, Talha Bin Yaqub, Abdelouahad Chala, Fabio Ferreira, and Filipe Fernandes, Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2459-2468. https://doi.org/10.1007/s12613-023-2655-0
引用本文 PDF XML SpringerLink
研究论文Open Access

TiSiN/CrVxN硬质多层膜的抗氧化机理以及摩擦学行为研究





  • 通讯作者:

    鞠洪博    E-mail: hju@uc.pt

    and Filipe Fernandes    E-mail: fid@isep.ipp.pt

文章亮点

  • (1) 系统地研究了TiSiN/CrVxN涂层的高温氧化物类型及其分布规律。
  • (2) 探讨了V在高温环境下的高温氧化行为。
  • (3) 揭示了V对TiSiN/CrVxN涂层室温摩擦磨损性能影响机制。
  • 全球因摩擦和磨损而造成的能源消耗和资源浪费日益严重,研发环境友好型固体润滑材料以解决严苛工况下减摩和耐磨问题是当今摩擦学领域的热点。含钒(V)的过渡族金属氮化物涂层材料因在高温范围内能原位生成具有层状结构的Magneli相而体现出优异的自润滑性能,得到了国内外相关领域学者的广泛关注。但其氧化机理的不明确限制了这类涂层材料性能进一步提升。本文通过利用直流磁控溅射技术制备了一系列的TiSiN/CrVxN自润滑涂层材料,研究了V对其抗氧化和摩擦磨损性能的影响规律。结果表明,涂层在高温氧化过程中会出现明显的两层氧化层,其中顶层为疏松的Ti(V)O2;底层为具有保护作用的氧化层,由铬的氧化物和硅的氧化物组成。V在高温环境下的迁移释放及其氧化导致涂层抗氧化能力随着V含量的升高而逐渐减弱。在室温条件下,V元素的添加能够显著的提升涂层的耐磨损性能,但是对这类涂层材料的摩擦系数的影响不大。
  • Research ArticleOpen Access

    Insights into the oxidation resistance mechanism and tribological behaviors of multilayered TiSiN/CrVxN hard coatings

    + Author Affiliations
    • In the last decades, vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties. In this work, the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current (DC) reactive magnetron sputtering is investigated. The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings. In general, two layers are formed during the oxidation process: i) Ti(V)O2 on top, followed by a protective layer, which is subdivided into two layers, Cr2O3 and Si–O. ii) The diffusion of V controls the oxidation of V-containing coatings. The addition of vanadium improves the wear resistance of coatings, and the wear rate decreases with increasing V content in the coatings; however, the friction coefficient is independent of the chemical composition of the coatings. The wear of the V-containing coatings is driven by polishing wear.
    • loading
    • Supplementary Information-10.1007s12613-023-2655-0.docx
    • [1]
      H.B. Ju, R. Zhou, J. Luan, et al., Tribological performance under different environments of Ti–C–N composite films for marine wear-resistant parts, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 144. doi: 10.1007/s12613-022-2551-z
      [2]
      V.Kh. Alimov and J. Roth, Deuterium retention in chemically vapor deposited tungsten carbide coatings and hot-rolled tungsten exposed to low-energy deuterium plasma, Tungsten, 4(2022), No. 1, p. 10. doi: 10.1007/s42864-021-00120-7
      [3]
      C. Wang, B.L. Ji, S.X. Gu, et al., Recent research progress on the compatibility of tritium breeders with structural materials and coatings in fusion reactors, Tungsten, 4(2022), No. 3, p. 170. doi: 10.1007/s42864-022-00160-7
      [4]
      H.B. Ju, D. Yu, J.H. Xu, et al., Crystal structure and tribological properties of ZrAlMoN composite films deposited by magnetron sputtering, Mater. Chem. Phys., 230(2019), p. 347. doi: 10.1016/j.matchemphys.2019.03.071
      [5]
      H.B. Ju, D. Yu, L.H. Yu, et al., The influence of Ag contents on the microstructure, mechanical and tribological properties of ZrN–Ag films, Vacuum, 148(2018), p. 54. doi: 10.1016/j.vacuum.2017.10.029
      [6]
      H.B. Ju, D.A. Yu, J.H. Xu, et al., Microstructure, mechanical, and tribological properties of niobium vanadium carbon nitride films, J. Vac. Sci. Technol. A, 36(2018), No. 3, art. No. 031511. doi: 10.1116/1.5020954
      [7]
      H.B. Ju, N. Ding, J.H. Xu, et al., Improvement of tribological properties of niobium nitride films via copper addition, Vacuum, 158(2018), p. 1. doi: 10.1016/j.vacuum.2018.09.037
      [8]
      Y.C. Chim, X.Z. Ding, X.T. Zeng, and S. Zhang, Oxidation resistance of TiN, CrN, TiAlN and CrAlN coatings deposited by lateral rotating cathode arc, Thin Solid Films, 517(2009), No. 17, p. 4845. doi: 10.1016/j.tsf.2009.03.038
      [9]
      Y.X. Xu, L. Chen, Z.Q. Liu, F. Pei, and Y. Du, Improving thermal stability of TiSiN nanocomposite coatings by multilayered epitaxial growth, Surf. Coat. Technol., 321(2017), p. 180. doi: 10.1016/j.surfcoat.2017.04.057
      [10]
      W.H. Zhang and J.H. Hsieh, Tribological behavior of TiN and CrN coatings sliding against an epoxy molding compound, Surf. Coat. Technol., 130(2000), No. 2-3, p. 240. doi: 10.1016/S0257-8972(00)00709-X
      [11]
      I. Milošev, H.H. Strehblow, and B. Navinšek, XPS in the study of high-temperature oxidation of CrN and TiN hard coatings, Surf. Coat. Technol., 74-75(1995), p. 897. doi: 10.1016/0257-8972(95)08360-X
      [12]
      M.A. Djouadi, C. Nouveau, O. Banakh, R. Sanjinés, F. Lévy, and G. Nouet, Stress profiles and thermal stability of CrxNy films deposited by magnetron sputtering, Surf. Coat. Technol., 151-152(2002), p. 510. doi: 10.1016/S0257-8972(01)01635-8
      [13]
      C.K. Liu, H.B. Ju, P.X. Han, et al., The influence of carbon content on the microstructure, mechanical and frictional property of chromium carbon nitride composite films, Vacuum, 178(2020), art. No. 109368. doi: 10.1016/j.vacuum.2020.109368
      [14]
      L.Q. He, L. Chen, Y.X. Xu, and Y. Du, Thermal stability and oxidation resistance of Cr1–xAlxN coatings with single phase cubic structure, J. Vac. Sci. Technol. A, 33(2015), No. 6, art. No. 061513. doi: 10.1116/1.4930424
      [15]
      D.B. Lee, Y.C. Lee, and S.C. Kwon, High temperature oxidation of a CrN coating deposited on a steel substrate by ion plating, Surf. Coat. Technol., 141(2001), No. 2-3, p. 227. doi: 10.1016/S0257-8972(01)01238-5
      [16]
      F.H. Lu, H.Y. Chen, and C.H. Hung, Degradation of CrN films at high temperature under controlled atmosphere, J. Vac. Sci. Technol. A, 21(2003), No. 3, p. 671. doi: 10.1116/1.1566784
      [17]
      A.E. Reiter, C. Mitterer, and B. Sartory, Oxidation of arc-evaporated Al1–xCrxN coatings, J. Vac. Sci. Technol. A, 25(2007), No. 4, p. 711. doi: 10.1116/1.2738492
      [18]
      Z.B. Qi, B. Liu, Z.T. Wu, F.P. Zhu, Z.C. Wang, and C.H. Wu, A comparative study of the oxidation behavior of Cr2N and CrN coatings, Thin Solid Films, 544(2013), p. 515. doi: 10.1016/j.tsf.2013.01.031
      [19]
      H.B. Ju, R. Wang, N. Ding, et al., Improvement on the oxidation resistance and tribological properties of molybdenum disulfide film by doping nitrogen, Mater. Des., 186(2020), art. No. 108300. doi: 10.1016/j.matdes.2019.108300
      [20]
      H.B. Ju, R. Zhou, J. Luan, et al., Multilayer Mo2N-Ag/SiNx films for demanding applications: Morphology, structure and temperature-cycling tribological properties, Mater. Des., 223(2022), art. No. 111128. doi: 10.1016/j.matdes.2022.111128
      [21]
      C.K. Liu, H.B. Ju, J.H. Xu, et al., Influence of copper on the compositions, microstructure and room and elevated temperature tribological properties of the molybdenum nitride film, Surf. Coat. Technol., 395(2020), art. No. 125811. doi: 10.1016/j.surfcoat.2020.125811
      [22]
      H.B. Ju, R. Zhou, S.J. Liu, L.H. Yu, J.H. Xu, and Y.X. Geng, Enhancement of the tribological behavior of self-lubricating nanocomposite Mo2N/Cu films by adding the amorphous SiNx, Surf. Coat. Technol., 423(2021), art. No. 127565. doi: 10.1016/j.surfcoat.2021.127565
      [23]
      H.B. Ju, R. Wang, W.X. Wang, J.H. Xu, L.H. Yu, and H. Luo, The microstructure and tribological properties of molybdenum and silicon nitride composite films, Surf. Coat. Technol., 401(2020), art. No. 126238. doi: 10.1016/j.surfcoat.2020.126238
      [24]
      Y.W. Lin, J.H. Huang, W.J. Cheng, and G.P. Yu, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, Surf. Coat. Technol., 350(2018), p. 745. doi: 10.1016/j.surfcoat.2018.04.077
      [25]
      A. AL-Rjoub, L. Rebouta, N.F. Cunha, F. Fernandes, N.P. Barradas, and E. Alves, W/AlSiTiNx/SiAlTiOyNx/SiAlOx multilayered solar thermal selective absorber coating, Sol. Energy, 207(2020), p. 192. doi: 10.1016/j.solener.2020.06.094
      [26]
      F. Vaz, L. Rebouta, P. Goudeau, et al., Characterisation of Ti1−xSixNy nanocomposite films, Surf. Coat. Technol., 133-134(2000), p. 307. doi: 10.1016/S0257-8972(00)00947-6
      [27]
      H.B. Ju, L.Y. Xu, J. Luan, et al., Enhancement on the hardness and oxidation resistance property of TiN/Ag composite films for high temperature applications by addition of Si, Vacuum, 209(2023), art. No. 111752. doi: 10.1016/j.vacuum.2022.111752
      [28]
      M. Diserens, J. Patscheider, and F. Lévy, Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films, Surf. Coat. Technol., 120-121(1999), p. 158. doi: 10.1016/S0257-8972(99)00481-8
      [29]
      J.B. Choi, K. Cho, M.H. Lee, and K.H. Kim, Effects of Si content and free Si on oxidation behavior of Ti–Si–N coating layers, Thin Solid Films, 447-448(2004), p. 365. doi: 10.1016/S0040-6090(03)01083-6
      [30]
      L.C. Chang, M.C. Sung, Y.I. Chen, and C.H. Tseng, Mechanical properties and oxidation behavior of CrWSiN films, Surf. Coat. Technol., 437(2022), art. No. 128368. doi: 10.1016/j.surfcoat.2022.128368
      [31]
      L. Aissani, M. Fellah, and C. Nouveau, Structural mechanical and tribological behavior of reactive sputtered Cr–N and Cr–V–N films, Diffusion Found., 18(2018), p. 27. doi: 10.4028/www.scientific.net/DF.18.27
      [32]
      B.B. Xu, P. Guo, Z.Y. Wang, et al., Anti-wear Cr–V–N coating via V solid solution: Microstructure, mechanical and tribological properties, Surf. Coat. Technol., 397(2020), art. No. 126048. doi: 10.1016/j.surfcoat.2020.126048
      [33]
      Y.X. Qiu, S. Zhang, B. Li, et al., Improvement of tribological performance of CrN coating via multilayering with VN, Surf. Coat. Technol., 231(2013), p. 357. doi: 10.1016/j.surfcoat.2012.03.010
      [34]
      F.X. Fu, S.W. Han, and Z. Chen, Influence of cathode current on corrosion resistance and tribological properties of TiAlN/TiVN hard coatings, Ferroelectrics, 549(2019), No. 1, p. 227. doi: 10.1080/00150193.2019.1592565
      [35]
      F. Fernandes, A. Loureiro, T. Polcar, and A. Cavaleiro, The effect of increasing V content on the structure, mechanical properties and oxidation resistance of Ti–Si–V–N films deposited by DC reactive magnetron sputtering, Appl. Surf. Sci., 289(2014), p. 114. doi: 10.1016/j.apsusc.2013.10.117
      [36]
      D.B. Lewis, S. Creasey, Z. Zhou, et al., The effect of (Ti+Al): V ratio on the structure and oxidation behaviour of TiAlN/VN nano-scale multilayer coatings, Surf. Coat. Technol., 177-178(2004), p. 252. doi: 10.1016/j.surfcoat.2003.09.041
      [37]
      A. Al-Rjoub, A. Cavaleiro, and F. Fernandes, Structure, morphology, thermal stability and oxidation resistance of multilayered TiSiN/VN films: Influence of TiSiN-layer thickness, J. Mater. Eng. Perform., 30(2021), No. 6, p. 3934. doi: 10.1007/s11665-021-05560-3
      [38]
      M. Athmani, A. AL-Rjoub, D. Cavaleiro, A. Chala, A. Cavaleiro, and F. Fernandes, Microstructural, mechanical, thermal stability and oxidation behavior of TiSiN/CrVxN multilayer coatings deposited by D.C. reactive magnetron sputtering, Surf. Coat. Technol., 405(2021), art. No. 126593. doi: 10.1016/j.surfcoat.2020.126593
      [39]
      H.B. Ju, N. Ding, J.H. Xu, et al., The influence of crystal structure and the enhancement of mechanical and frictional properties of titanium nitride film by addition of ruthenium, Appl. Surf. Sci., 489(2019), p. 247. doi: 10.1016/j.apsusc.2019.05.251
      [40]
      T. Kacsich, S. Gasser, Y. Tsuji, A. Dommann, and M.A. Nicolet, Wet oxidation of Ti34Si23N43, J. Appl. Phys., 85(1999), No. 3, p. 1871. doi: 10.1063/1.369342
      [41]
      T. Kacsich and M.A. Nicolet, Moving species in Ti34Si23N43 oxidation, Thin Solid Films, 349(1999), No. 1-2, p. 1. doi: 10.1016/S0040-6090(99)00178-9
      [42]
      M. Danek, F. Fernandes, A. Cavaleiro, and T. Polcar, Influence of Cr additions on the structure and oxidation resistance of multilayered TiAlCrN films, Surf. Coat. Technol., 313(2017), p. 158. doi: 10.1016/j.surfcoat.2017.01.053
      [43]
      T. Takahashi, Y. Minamino, H. Hirasawa, and T. Ouchi, High-temperature oxidation and its kinetics study of Ti–Al and Ti–V alloys in air, Mater. Trans., 55(2014), No. 2, p. 290. doi: 10.2320/matertrans.L-M2013840
      [44]
      R. Zhou, H.B. Ju, S.J. Liu, et al., The influences of Ag content on the friction and wear properties of TiCN–Ag films, Vacuum, 196(2022), art. No. 110719. doi: 10.1016/j.vacuum.2021.110719
      [45]
      S. Yang, Y. Chang, D. Lin, D. Wang, and W. Wu, Mechanical and tribological properties of multilayered TiSiN/CrN coatings synthesized by a cathodic arc deposition process, Surf. Coat. Technol., 202(2008), p. 2176. doi: 10.1016/j.surfcoat.2007.09.004
      [46]
      P.H. Mayrhofer, P.E. Hovsepian, C. Mitterer, and W.D. Münz, Calorimetric evidence for frictional self-adaptation of TiAlN/VN superlattice coatings, Surf. Coat. Technol., 177-178(2004), p. 341. doi: 10.1016/j.surfcoat.2003.09.024
      [47]
      Y.X. Qiu, B. Li, J.W. Lee, and D.L. Zhao, Self-lubricating CrVN coating strengthened via multilayering with VN, J. Iron Steel Res. Int., 21(2014), No. 5, p. 545. doi: 10.1016/S1006-706X(14)60085-6
      [48]
      L. Rapoport, A. Moshkovich, V. Perfilyev, et al., High temperature friction behavior of CrVxN coatings, Surf. Coat. Technol., 238(2014), p. 207. doi: 10.1016/j.surfcoat.2013.10.076
      [49]
      L. Aissani, M. Fellah, L. Radjehi, C. Nouveau, A. Montagne, and A. Alhussein, Effect of annealing treatment on the microstructure, mechanical and tribological properties of chromium carbonitride coatings, Surf. Coat. Technol., 359(2019), p. 403. doi: 10.1016/j.surfcoat.2018.12.099
      [50]
      H.B. Ju, N. Ding, J.H. Xu, L.H. Yu, Y.X. Geng, and F. Ahmed, The tribological behavior of niobium nitride and silver composite films at elevated testing temperatures, Mater. Chem. Phys., 237(2019), art. No. 121840. doi: 10.1016/j.matchemphys.2019.121840
      [51]
      H.B. Ju, K.H. Huang, J. Luan, Y.X. Geng, J.F. Yang, and J.H. Xu. Evaluation under temperature cycling of the tribological properties of the Ag-SiNx films for green tribological applications, Ceram. Int., 49(2023), No. 18, p. 30115. doi: 10.1016/j.ceramint.2023.06.267

    Catalog


    • /

      返回文章
      返回