Cite this article as: |
Yumeng Li, Qing Zhao, Xiaohui Mei, Chengjun Liu, Henrik Saxén, and Ron Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2182-2190. https://doi.org/10.1007/s12613-023-2657-y |
赵青 E-mail: zhaoq@smm.neu.edu.cn
Supplementary Information-10.1007s12613-023-2657-y.doc |
[1] |
J. Su, Y.B. Liang, L. Ding, G.S. Zhang, and H. Liu, Research on China’s energy development strategy under carbon neutrality, Bull. Chin. Acad. Sci., 36(2021), No. 9, p. 1001. doi: 10.16418/j.issn.1000-3045.20210727001
|
[2] |
W.L. Dong, G.H. Ding, A.J. Xu, et al., Development of CO2 capture and utilization technology in steelmaking plant, Iron Steel Res. Int., (2023). DOI: 10.1007/s42243-023-00927-3
|
[3] |
H.X. Zhang, W.Q. Sun, W.D. Li, and G.Y. Ma, A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub, Appl. Energy, 309(2022), art. No. 118485. doi: 10.1016/j.apenergy.2021.118485
|
[4] |
L.Y. Liu, H.G. Ji, X.F. Lü, et al., Mitigation of greenhouse gases released from mining activities: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 513. doi: 10.1007/s12613-020-2155-4
|
[5] |
J.L. Guo, Y.P. Bao, and M. Wang, Steel slag in China: Treatment, recycling, and management, Waste Manage., 78(2018), p. 318. doi: 10.1016/j.wasman.2018.04.045
|
[6] |
H. Matsuura, X. Yang, G. Li, Z. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739. doi: 10.1007/s12613-021-2400-5
|
[7] |
Z.F. Cui, A.J. Xu, and F.Q. Shang Guan, Low-carbon development strategy analysis of the domestic and foreign steel industry, Chin. J. Eng., 44(2022), No. 9, p. 1496.
|
[8] |
A.J. Nathanael, K. Kannaiyan, A.K. Kunhiraman, S. Ramakrishna, and V. Kumaravel, Global opportunities and challenges on net-zero CO2 emissions towards a sustainable future, React. Chem. Eng., 6(2021), No. 12, p. 2226. doi: 10.1039/D1RE00233C
|
[9] |
W.Q. Liu, N.W.L. Low, B. Feng, G. Wang, and J.C. Diniz da Costa, Calcium precursors for the production of CaO sorbents for multicycle CO2 capture, Environ. Sci. Technol., 44(2010), No. 2, p. 841. doi: 10.1021/es902426n
|
[10] |
T. Witoon, Characterization of calcium oxide derived from waste eggshell and its application as CO2 sorbent, Ceram. Int., 37(2011), No. 8, p. 3291. doi: 10.1016/j.ceramint.2011.05.125
|
[11] |
Y.J. Li, R.Y. Sun, C.T. Liu, H.L. Liu, and C.M. Lu, CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles, Int. J. Greenhouse Gas Control, 9(2012), p. 117. doi: 10.1016/j.ijggc.2012.03.012
|
[12] |
Y.J. Li, R.Y. Sun, H.L. Liu, and C.M. Lu, Reactivation properties of carbide slag as a CO2 sorbent during calcination/carbonation cycles, [in] H.Y. Qi and B. Zhao, eds., Cleaner Combustion and Sustainable World, Berlin, 2013, p. 1233.
|
[13] |
S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, and X.J. Chen, Synthesis of highly efficient CaO-based, self-stabilizing CO2 sorbents via structure-reforming of steel slag, Environ. Sci. Technol., 49(2015), No. 12, p. 7464. doi: 10.1021/acs.est.5b00244
|
[14] |
S.C. Tian, J.G. Jiang, F. Yan, K.M. Li, X.J. Chen, and V. Manovic, Highly efficient CO2 capture with simultaneous iron and CaO recycling for the iron and steel industry, Green Chem., 18(2016), No. 14, p. 4022. doi: 10.1039/C6GC00400H
|
[15] |
M. Broda, A.M. Kierzkowska, and C.R. Müller, Application of the sol–gel technique to develop synthetic calcium-based sorbents with excellent carbon dioxide capture characteristics, ChemSusChem, 5(2012), No. 2, p. 411. doi: 10.1002/cssc.201100468
|
[16] |
D. Karami and N. Mahinpey, Highly active CaO-based sorbents for CO2 capture using the precipitation method: Preparation and characterization of the sorbent powder, Ind. Eng. Chem. Res., 51(2012), No. 12, p. 4567. doi: 10.1021/ie2024257
|
[17] |
H.C. Chen, C.S. Zhao, Y.J. Li, and X.P. Chen, CO2 capture performance of calcium-based sorbents in a pressurized carbonation/calcination loop, Energy Fuels, 24(2010), No. 10, p. 5751. doi: 10.1021/ef100565d
|
[18] |
M. Erans, V. Manovic, and E.J. Anthony, Calcium looping sorbents for CO2 capture, Appl. Energy, 180(2016), p. 722. doi: 10.1016/j.apenergy.2016.07.074
|
[19] |
J. Miranda-Pizarro, A. Perejón, J.M. Valverde, P.E. Sánchez-Jiménez, and L.A. Pérez-Maqueda, Use of steel slag for CO2 capture under realistic calcium-looping conditions, RSC Adv., 6(2016), No. 44, p. 37656. doi: 10.1039/C6RA03210A
|
[20] |
X.Y. Yan, Y.J. Li, J.L. Zhao, and Z.Y. Wang, Density functional theory study on CO2 adsorption by Ce-promoted CaO in the presence of steam, Energy Fuels, 34(2020), No. 5, p. 6197. doi: 10.1021/acs.energyfuels.0c00972
|
[21] |
L.Y. Li, D.L. King, Z.M. Nie, and C. Howard, Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO2 capture, Ind. Eng. Chem. Res., 48(2009), No. 23, p. 10604. doi: 10.1021/ie901166b
|
[22] |
S. Rodiah, M. Huljana, J.L. Al Jabbar, C. Ichsan, and H. Marzuki, Silica-rice husk as adsorbent of Cr (VI) ions prepared through sol–gel method, Walisongo J. Chem., 4(2021), No. 1, p. 65. doi: 10.21580/wjc.v4i1.8045
|
[23] |
Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Effect of lime on stability of chromium in stainless steel slag, Minerals, 8(2018), No. 10, art. No. 424. doi: 10.3390/min8100424
|
[24] |
Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Stability of chromium in stainless steel slag during cooling, Minerals, 8(2018), No. 10, art. No. 445. doi: 10.3390/min8100445
|
[25] |
Q. Zhao, C.J. Liu, T.C. Gao, L. Gao, H. Saxén, and R. Zevenhoven, Remediation of stainless steel slag with MnO for CO2 mineralization, Process. Saf. Environ. Prot., 127(2019), p. 1. doi: 10.1016/j.psep.2019.04.025
|
[26] |
Q. Zhao, J.Y. Li, K.W. You, and C.J. Liu, Recovery of calcium and magnesium bearing phases from iron- and steelmaking slag for CO2 sequestration, Process. Saf. Environ. Prot., 135(2020), p. 81. doi: 10.1016/j.psep.2019.12.012
|
[27] |
Q. Zhao, K. Liu, L.F. Sun, et al., Towards carbon sequestration using stainless steel slag via phase modification and co-extraction of calcium and magnesium, Process. Saf. Environ. Prot., 133(2020), p. 73. doi: 10.1016/j.psep.2019.11.004
|
[28] |
L.H. Cao, C.J. Liu, Q. Zhao, and M.F. Jiang, Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag, J. Iron Steel Res. Int., 24(2017), No. 3, p. 258. doi: 10.1016/S1006-706X(17)30038-9
|
[29] |
D.D. Fang, L.H. Zhang, L.J. Zou, and F. Duan, Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics, Greenhouse Gases: Sci. Technol., 11(2021), No. 5, p. 924. doi: 10.1002/ghg.2103
|
[30] |
S.F. Wu, Q.H. Li, J.N. Kim, and K. B. Yi, Properties of a nano CaO/Al2O3 CO2 sorbent, Ind. Eng. Chem. res., 47(2008), No. 1, p. 180. doi: 10.1021/ie0704748
|
[31] |
M. Broda, A.M. Kierzkowska, and R.C. Muller. Development of highly effective CaO-based, MgO-stabilized CO2 sorbents via a scalable “one-pot” recrystallization technique, Adv. Funct. Mater., 24(2014), No. 36, p. 5753. doi: 10.1002/adfm.201400862
|
[32] |
P.Q. Lan and S.F. Wu, Synthesis of a porous nano-CaO/MgO-based CO2 adsorbent, Chem. Eng. Technol., 37(2014), No. 4, p. 580. doi: 10.1002/ceat.201300709
|
[33] |
W.Q. Liu, B. Feng, Y.Q. Wu, G.X. Wang, J. Barry, and J.C. Diniz da Costa, Synthesis of sintering-resistant sorbents for CO2 capture, Environ. Sci. Technol., 44(2010), No. 8, p. 3093. doi: 10.1021/es903436v
|
[34] |
C. Luo, Y. Zheng, Q.L. Wu, N. Ding, and C. Zheng, Cyclic reaction characters of novel CaO/MgO high temperature CO2 sorbents, J. Eng. Thermophys., 32(2011), No. 11, p. 1957.
|
[35] |
M.A. Naeem, A. Armutlulu, Q. Imtiaz, et al., Optimization of the structural characteristics of CaO and its effective stabilization yield high-capacity CO2 sorbents, Nat. Commun., 9(2018), art. No. 2408. doi: 10.1038/s41467-018-04794-5
|
[36] |
X.H. Mei, Q. Zhao, Y. Min, C.J. Liu, H. Saxén, and R. Zevenhoven, Phase transition and dissolution behavior of Ca/Mg-bearing silicates of steel slag in acidic solutions for integration with carbon sequestration, Process. Saf. Environ. Prot., 159(2022), p. 221. doi: 10.1016/j.psep.2021.12.062
|
[37] |
X.H. Mei, Q. Zhao, J.Y. Zhou, et al., Phase transition of Ca- and Mg-bearing minerals of steel slag in acidic solution for CO2 sequestration, J. Sustain. Metall., 7(2021), No. 2, p. 391. doi: 10.1007/s40831-021-00374-y
|
[38] |
X.H. Mei, Q. Zhao, Y.M. Li, et al., Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328(2022), art. No. 125259. doi: 10.1016/j.fuel.2022.125259
|
[39] |
R.J. Ferretti and W.M. Hoffman, Determination of calcium and magnesium in mixed fertilizers by EDTA titration, J. Assoc. Off. Agric. Chem., 45(1962), No. 1, p. 22. doi: doi.org/10.1093/jaoac/45.1.22
|
[40] |
C. Luo, Y. Zheng, N. Ding, Q.L. Wu, and C. Zheng, Synthesis and performance of a nano synthetic Ca-based sorbent for high temperature CO2 capture, Proc. CESS, 31(2011), No. 8, p. 45.
|
[41] |
H.T. Jang, Y. Park, Y.S. Ko, J.Y. Lee, and B. Margandan, Highly siliceous MCM-48 from rice husk ash for CO2 adsorption, Int. J. Greenhouse Gas Control, 3(2009), No. 5, p. 545. doi: 10.1016/j.ijggc.2009.02.008
|
[42] |
W.T. Zeng and H. Bai, Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient CO2 capture, Chem. Eng. J., 251(2014), p. 1. doi: 10.1016/j.cej.2014.04.041
|
[43] |
B. Khoshandam, R.V. Kumar, and L. Allahgholi, Mathematical modeling of CO2 removal using carbonation with CaO: The grain model, Korean J. Chem. Eng., 27(2010), No. 3, p. 766. doi: 10.1007/s11814-010-0119-5
|
[44] |
C.Q. Hu, T. Han, Y.Z. Zhang, and Z.X. Zhang, Theoretical foundation of carbonation pellet process for ferrous sludge recycling, J. Iron Steel Res. Int., 18(2011), No. 12, p. 27. doi: 10.1016/S1006-706X(12)60005-3
|
[45] |
P.J. Barrie, The mathematical origins of the kinetic compensation effect: 1. the effect of random experimental errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 318. doi: 10.1039/C1CP22666E
|
[46] |
P.J. Barrie, The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 327. doi: 10.1039/C1CP22667C
|
[47] |
V. Manovic and E.J. Anthony, Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles, Environ. Sci. Technol., 42(2008), No. 11, p. 4170. doi: 10.1021/es800152s
|