Cite this article as: |
Xuan Zhao, Liangxu Xu, Xiaochen Xun, Fangfang Gao, Qingliang Liao, and Yue Zhang, Dynamic behavior of tunneling triboelectric charges in two-dimensional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1801-1808. https://doi.org/10.1007/s12613-023-2659-9 |
廖庆亮 E-mail: liao@ustb.edu.cn
张跃 E-mail: yuezhang@ustb.edu.cn
[1] |
A.P. Johnson, H.J. Cleaves, J.P. Dworkin, D.P. Glavin, A. Lazcano, and J.L. Bada, The Miller volcanic spark discharge experiment, Science, 322(2008), No. 5900, art. No. 404. doi: 10.1126/science.1161527
|
[2] |
H.T. Baytekin, B. Baytekin, T.M. Hermans, B. Kowalczyk, and B.A. Grzybowski, Control of surface charges by radicals as a principle of antistatic polymers protecting electronic circuitry, Science, 341(2013), No. 6152, p. 1368. doi: 10.1126/science.1241326
|
[3] |
A. Ohsawa, Brush and propagating brush discharges on insulating sheets in contact with a grounded conductor, J. Electrost., 88(2017), p. 171. doi: 10.1016/j.elstat.2017.01.006
|
[4] |
M.Y. Ma, Z. Kang, Q.L. Liao, et al., Development, applications, and future directions of triboelectric nanogenerators, Nano Res., 11(2018), No. 6, p. 2951. doi: 10.1007/s12274-018-1997-9
|
[5] |
Y.S. Zhou, Y. Liu, G. Zhu, et al., In situ quantitative study of nanoscale triboelectrification and patterning, Nano Lett., 13(2013), No. 6, p. 2771. doi: 10.1021/nl401006x
|
[6] |
L. Tong, Z.R. Peng, R.F. Lin, et al., 2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware, Science, 373(2021), No. 6561, p. 1353. doi: 10.1126/science.abg3161
|
[7] |
J. Wang, T.F. Fan, J.C. Lu, X.M. Cai, L. Gao, and J.M. Cai, Chemical vapor deposition growth behavior of graphene, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 136. doi: 10.1007/s12613-021-2302-6
|
[8] |
H.H. Yu, Z.H. Cao, Z. Zhang, X.K. Zhang, and Y. Zhang, Flexible electronics and optoelectronics of 2D van der Waals materials, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 671. doi: 10.1007/s12613-022-2426-3
|
[9] |
Z.Y. Lin, Y. Huang, and X.F. Duan, Van der Waals thin-film electronics, Nat. Electron., 2(2019), No. 9, p. 378. doi: 10.1038/s41928-019-0301-7
|
[10] |
V.K. Sangwan and M.C. Hersam, Neuromorphic nanoelectronic materials, Nat. Nanotechnol., 15(2020), No. 7, p. 517. doi: 10.1038/s41565-020-0647-z
|
[11] |
Y.T. Zheng, J.J. Wei, J.L. Liu, et al., Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
|
[12] |
F. Li, R. Tao, B.L. Cao, L. Yang, and Z.G. Wang, Manipulating the light-matter interaction of PtS/MoS2 p-n junctions for high performance broadband photodetection, Adv. Funct. Mater., 31(2021), No. 36, art. No. 2104367. doi: 10.1002/adfm.202104367
|
[13] |
J.L. Du, H.H. Yu, B.S. Liu, et al., Strain engineering in 2D material-based flexible optoelectronics, Small Methods, 5(2021), No. 1, art. No. 2000919. doi: 10.1002/smtd.202000919
|
[14] |
B.S. Liu, J.L. Du, H.H. Yu, et al., The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides, Nano Res., 14(2021), No. 6, p. 1734. doi: 10.1007/s12274-020-3253-3
|
[15] |
Z.M. Ye, C. Tan, X.L. Huang, et al., Emerging MoS2 wafer-scale technique for integrated circuits, Nano-Micro Lett., 15(2023), No. 1, art. No. 38. doi: 10.1007/s40820-022-01010-4
|
[16] |
X.K. Zhang, Q.L. Liao, S. Liu, et al., Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS2 homojunction photodiode, Nat. Commun., 8(2017), art. No. 15881. doi: 10.1038/ncomms15881
|
[17] |
J.L. Du, Q.L. Liao, M.Y. Hong, et al., Piezotronic effect on interfacial charge modulation in mixed-dimensional Van der Waals heterostructure for ultrasensitive flexible photodetectors, Nano Energy, 58(2019), p. 85. doi: 10.1016/j.nanoen.2019.01.024
|
[18] |
H.H. Yu, Q.L. Liao, Z. Kang, et al., Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection, Small, 16(2020), No. 47, art. No. 2005520. doi: 10.1002/smll.202005520
|
[19] |
L.F. Xue, Z. Zhang, L.X. Xu, et al., Information accessibility oriented self-powered and ripple-inspired fingertip interactors with auditory feedback, Nano Energy, 87(2021), art. No. 106117. doi: 10.1016/j.nanoen.2021.106117
|
[20] |
X. Zhao, Z. Zhang, L.X. Xu, et al., Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001. doi: 10.1016/j.nanoen.2021.106001
|
[21] |
X. Zhao, Z. Zhang, Q.L. Liao, et al., Self-powered user-interactive electronic skin for programmable touch operation platform, Sci. Adv., 6(2020), No. 28, art. No. eaba4294. doi: 10.1126/sciadv.aba4294
|
[22] |
L.H. Han, X. Zhao, M.Y. Ma, et al., Self-powered visualization system by conjunction of photovoltaic effect and contact-electrification, Nano Energy, 57(2019), p. 528. doi: 10.1016/j.nanoen.2018.12.074
|
[23] |
S. Kim, T.Y. Kim, K.H. Lee, et al., Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics, Nat. Commun., 8(2017), art. No. 15891. doi: 10.1038/ncomms15891
|
[24] |
L. Cheng, Q. Xu, Y.B. Zheng, X.F. Jia, and Y. Qin, A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed, Nat. Commun., 9(2018), No. 1, art. No. 3773. doi: 10.1038/s41467-018-06045-z
|
[25] |
Y.S. Zhou, S. Wang, Y. Yang, et al., Manipulating nanoscale contact electrification by an applied electric field, Nano Lett., 14(2014), No. 3, p. 1567. doi: 10.1021/nl404819w
|