留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  625
  • HTML全文浏览量:  261
  • PDF下载量:  74
  • 被引次数: 0
Tianhua Zhang, Longheng Xiao, Guibo Qiu, Huigang Wang, Min Guo, Xiangtao Huo,  and Mei Zhang, Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2191-2199. https://doi.org/10.1007/s12613-023-2660-3
Cite this article as:
Tianhua Zhang, Longheng Xiao, Guibo Qiu, Huigang Wang, Min Guo, Xiangtao Huo,  and Mei Zhang, Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2191-2199. https://doi.org/10.1007/s12613-023-2660-3
引用本文 PDF XML SpringerLink
研究论文

热态钢渣余热回收的数值模拟、验证和工业试验


  • 通讯作者:

    王会刚    E-mail: wanghuigang0822@126.com

    张梅    E-mail: zhangmei@ustb.edu.cn

文章亮点

  • (1) 建立了热态钢渣余热回收的数值模型。
  • (2) 系统研究了不同流场下热态钢渣余热回收的数值模拟规律。
  • (3) 进行了不同流场下热态钢渣余热回收数值模拟的工业验证。
  • (4) 最优流场下,热态钢渣余热回收的工业试验钢渣余热回收效率高达81%。
  • 钢渣是炼钢过程中产生的一种固体废弃物,温度高达1400°C,是一种重要的能源载体。目前针对钢渣的处理技术中,基本上没有考虑高温钢渣的余热回收,造成巨大的能源浪费。基于此,本文采用颗粒固定床对钢渣余热进行了工业级在线试验。为了减少余热回收的盲目性和优化流场,通过模拟计算和工业试验相结合的方法,对热钢渣在颗粒床中的热回收进行了研究。首先,采用数值模拟方法预测了三种不同流场(O型、S型和Non型)下钢渣余热回收效率。随后,进行了钢渣余热回收的工业试验以验证模拟结果。模拟计算和工业试验结果均表明,三种流场下钢渣余热回收效率从大到小为依次为Non型流场、S型流场和O型流场。最后,在最优流场(Non型)下进行了钢渣余热回收的工业化在线试验。试验结果表明当鼓风机风量为14687 m3/h,钢渣厚度从400、300 mm减少到200 mm(相应地钢渣质量从3.96、2.97减少到1.98 t)时,钢渣余热回收效率从~76%、~78%提高到~81%。本文的研究结果表明,数值模拟不仅可以指导余热回收实验,而且可以优化流场。因此,这项工作可能为数值模拟与工业试验的相互验证提供一种新的思路,以提高工业试验的成功率,最终实现热钢渣热回收的工业突破。
  • Research Article

    Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test

    + Author Affiliations
    • Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method. First, the effective thermal conductivity of the granular bed was calculated. Then, the unsteady-state model was used to simulate the heat recovery under three different flow fields (O-type, S-type, and nonshielding type (Nontype)). Second, the simulation results were validated by in-situ industrial experiments. The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype, S-type, and O-type. Finally, heat recovery was carried out under the Nontype flow field in an industrial test. The heat recovery efficiency increased from ~76% and ~78% to ~81% when the steel slag thickness decreased from 400 and 300 to 200 mm, corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m3/h. Therefore, the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field. Most importantly, the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale.
    • loading
    • [1]
      H. Matsuura, X. Yang, G. Li, Z. Yuan, and F. Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 739.[PubMed]. doi: 10.1007/s12613-021-2400-5
      [2]
      Y. Sun, S, Seetharaman, Q, Liu, Z, Zhang, L, Liu, and X. Wang, Integrated biomass gasification using the waste heat from hot slags: Control of syngas and polluting gas releases, Energy, 114(2016), p. 165. doi: 10.1016/j.energy.2016.07.161
      [3]
      N. Shigaki, H. Tobo, S. Ozawa, Y. Ta, and K. Hagiwara, Heat recovery process from packed bed of hot slag plates, ISIJ Int., 55(2015), No. 10, p. 2258. doi: 10.2355/isijinternational.ISIJINT-2015-169
      [4]
      R.M. McDavid and B.G. Thomas, Flow and thermal behavior of the top surface flux/powder layers in continuous casting molds, Metall. Mater. Trans. B, 27(1996), No. 4, p. 672. doi: 10.1007/BF02915666
      [5]
      Y.Q. Sun, Z.T. Zhang, L.L. Liu, and X.D. Wang, Heat recovery from high temperature slags: A review of chemical methods, Energies, 8(2015), No. 3, p. 1917. doi: 10.3390/en8031917
      [6]
      L. Andreas, S. Diener, and A. Lagerkvist, Steel slags in a landfill top cover - Experiences from a full-scale experiment, Waste Manage., 34(2014), No. 3, p. 692. doi: 10.1016/j.wasman.2013.12.003
      [7]
      L.H. Zhao, W. Wei, H. Bai, X. Zhang, and D.Q. Cang, Synthesis of steel slag ceramics: Chemical composition and crystalline phases of raw materials, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 325. doi: 10.1007/s12613-015-1077-z
      [8]
      L.D. Poulikakos, C. Papadaskalopoulou, B. Hofko, et al., Harvesting the unexplored potential of European waste materials for road construction, Resour. Conserv. Recycl., 116(2017), p. 32. doi: 10.1016/j.resconrec.2016.09.008
      [9]
      M.X. Shi, Q. Wang, and Z.K. Zhou, Comparison of the properties between high-volume fly ash concrete and high-volume steel slag concrete under temperature matching curing condition, Constr. Build. Mater., 98(2015), p. 649. doi: 10.1016/j.conbuildmat.2015.08.134
      [10]
      P.E. Tsakiridis, G.D. Papadimitriou, S. Tsivilis, and C. Koroneos, Utilization of steel slag for Portland cement clinker production, J. Hazard. Mater., 152(2008), No. 2, p. 805. doi: 10.1016/j.jhazmat.2007.07.093
      [11]
      P. Xue, A.J. Xu, D.F. He, et al., Research on the sintering process and characteristics of belite sulphoaluminate cement produced by BOF slag, Constr. Build. Mater., 122(2016), p. 567. doi: 10.1016/j.conbuildmat.2016.06.098
      [12]
      B. Ismail and W. Ahmed, Thermoelectric power generation using waste-heat energy as an alternative green technology, Recent Pat. Electr. Eng., 2(2009), No. 1, p. 27. doi: 10.2174/1874476110902010027
      [13]
      G. Bisio, Energy recovery from molten slag and exploitation of the recovered energy, Energy, 22(1997), No. 5, p. 501. doi: 10.1016/S0360-5442(96)00149-1
      [14]
      H.N. Zhang, J.P. Dong, C. Wei, C.F. Cao, and Z.T. Zhang, Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction, Energy, 239(2022), art. No. 122543. doi: 10.1016/j.energy.2021.122543
      [15]
      W.B. Chen, M.H. Wang, L.L. Liu, H. Wang, and X.D. Wang, Three-stage method energy–mass coupling high-efficiency utilization process of high-temperature molten steel slag, Metall. Mater. Trans. B, 52(2021), No. 5, p. 3004. doi: 10.1007/s11663-021-02213-7
      [16]
      N. Maruoka, T. Mizuochi, H. Purwanto, and T. Akiyama, Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator, ISIJ Int., 44(2004), No. 2, p. 257. doi: 10.2355/isijinternational.44.257
      [17]
      W. van Antwerpen, C.G. du Toit, and P.G. Rousseau, A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles, Nucl. Eng. Des., 240(2010), No. 7, p. 1803. doi: 10.1016/j.nucengdes.2010.03.009
      [18]
      J.D. Felske, Approximate radiation shape factors between two spheres, J. Heat Transfer, 100(1978), No. 3, p. 547. doi: 10.1115/1.3450848
      [19]
      J.R. Howell, The Monte Carlo method in radiative heat transfer, J. Heat Transfer, 120(1998), No. 3, p. 547. doi: 10.1115/1.2824310
      [20]
      M.L. Pitso, Characterisation of Long Range Radiation Heat Transfer in Packed Pebble Bed [Dissertation], North-West University, Evanston, 2011, p. 68.
      [21]
      S.C. Wang, C.Y. Xu, W. Liu, and Z.C. Liu, Numerical study on heat transfer performance in packed bed, Energies, 12(2019), No. 3, art. No. 414. doi: 10.3390/en12030414
      [22]
      R.S. Abdulmohsin and M.H. Al-Dahhan, Characteristics of convective heat transport in a packed pebble-bed reactor, Nucl. Eng. Des., 284(2015), p. 143. doi: 10.1016/j.nucengdes.2014.11.041
      [23]
      A. Sharma, A. Thakur, S.K. Saha, A. Sharma, D. Sharma, and P. Chaudhuri, Thermal-hydraulic characteristics of purge gas in a rectangular packed pebble bed of a fusion reactor using DEM-CFD and porous medium analyses, Fusion Eng. Des., 160(2020), art. No. 111848. doi: 10.1016/j.fusengdes.2020.111848
      [24]
      T.H. Zhang, G.B. Qiu, H.G. Wang, M. Guo, F.Q. Cheng, and M. Zhang, In-suit industrial tests of the highly efficient recovery of waste heat and reutilization of the hot steel slag, ACS Sustainable Chem. Eng., 9(2021), No. 10, p. 3955. doi: 10.1021/acssuschemeng.1c00081
      [25]
      T.H. Zhang, C.P. Liu, H.G. Wang, M. Guo, M. Zhang, Numerical simulation of radiative heat transfer in a binary-size granular bed, Therm. Sci., 26(2022), No. 6B, p. 5095.
      [26]
      T. Mizuochi, T. Akiyama, T. Shimada, E. Kasai, and J.I. Yagi, Feasibility of rotary cup atomizer for slag granulation, ISIJ Int., 41(2001), No. 12, p. 1423. doi: 10.2355/isijinternational.41.1423
      [27]
      H. Zhang, H. Wang, X. Zhu, et al., A review of waste heat recovery technologies towards molten slag in steel industry, Appl. Energy, 112(2013), p. 956. doi: 10.1016/j.apenergy.2013.02.019
      [28]
      Y. Zhang, J. Zhang, T.Y. Zhang, Y.M. Liu, and Z.B. Han, Analysis of steel slag treatment technology and waste heat recovery technology, China Metall., 24(2014), No. 8, p. 33. doi: 10.13228/j.boyuan.issn1006-9356.20130209

    Catalog


    • /

      返回文章
      返回