Cite this article as:

Tianhua Zhang, Longheng Xiao, Guibo Qiu, Huigang Wang, Min Guo, Xiangtao Huo, and Mei Zhang, Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp.2191-2199. https://dx.doi.org/10.1007/s12613-023-2660-3
Tianhua Zhang, Longheng Xiao, Guibo Qiu, Huigang Wang, Min Guo, Xiangtao Huo, and Mei Zhang, Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp.2191-2199. https://dx.doi.org/10.1007/s12613-023-2660-3
引用本文 PDF XML SpringerLink

热态钢渣余热回收的数值模拟、验证和工业试验

摘要: 钢渣是炼钢过程中产生的一种固体废弃物,温度高达1400°C,是一种重要的能源载体。目前针对钢渣的处理技术中,基本上没有考虑高温钢渣的余热回收,造成巨大的能源浪费。基于此,本文采用颗粒固定床对钢渣余热进行了工业级在线试验。为了减少余热回收的盲目性和优化流场,通过模拟计算和工业试验相结合的方法,对热钢渣在颗粒床中的热回收进行了研究。首先,采用数值模拟方法预测了三种不同流场(O型、S型和Non型)下钢渣余热回收效率。随后,进行了钢渣余热回收的工业试验以验证模拟结果。模拟计算和工业试验结果均表明,三种流场下钢渣余热回收效率从大到小为依次为Non型流场、S型流场和O型流场。最后,在最优流场(Non型)下进行了钢渣余热回收的工业化在线试验。试验结果表明当鼓风机风量为14687 m3/h,钢渣厚度从400、300 mm减少到200 mm(相应地钢渣质量从3.96、2.97减少到1.98 t)时,钢渣余热回收效率从~76%、~78%提高到~81%。本文的研究结果表明,数值模拟不仅可以指导余热回收实验,而且可以优化流场。因此,这项工作可能为数值模拟与工业试验的相互验证提供一种新的思路,以提高工业试验的成功率,最终实现热钢渣热回收的工业突破。

 

Waste heat recovery from hot steel slag on the production line: Numerical simulation, validation and industrial test

Abstract: Waste heat recovery from hot steel slag was determined in a granular bed through the combination of numerical simulation and an industrial test method. First, the effective thermal conductivity of the granular bed was calculated. Then, the unsteady-state model was used to simulate the heat recovery under three different flow fields (O-type, S-type, and nonshielding type (Nontype)). Second, the simulation results were validated by in-situ industrial experiments. The two methods confirmed that the heat recovery efficiencies of the flow fields from high to low followed the order of Nontype, S-type, and O-type. Finally, heat recovery was carried out under the Nontype flow field in an industrial test. The heat recovery efficiency increased from ~76% and ~78% to ~81% when the steel slag thickness decreased from 400 and 300 to 200 mm, corresponding to reductions in the steel slag mass from 3.96 and 2.97 to 1.98 t with a blower air volume of 14687 m3/h. Therefore, the research results showed that numerical simulation can not only guide experiments on waste heat recovery but also optimize the flow field. Most importantly, the method proposed in this paper has achieved higher waste heat recovery from hot steel slag in industrial scale.

 

/

返回文章
返回