Cite this article as: |
Gaili Xue, Erol Yilmaz, and Yongding Wang, Progress and prospects of mining with backfill in metal mines in China, Int. J. Miner. Metall. Mater., 30(2023), No. 8, pp. 1455-1473. https://doi.org/10.1007/s12613-023-2663-0 |
薛改利 E-mail: hnpyxgl@126.com
Erol Yilmaz E-mail: erol.yilmaz@erdogan.edu.tr
[1] |
S.F. Wang, L.C. Sun, Y. Tang, Y. Jing, X.B. Li, and J.R. Yao, Field application of non-blasting mechanized mining using high-frequency impact hammer in deep hard rock mine, Trans. Nonferrous Met. Soc. China, 32(2022), No. 9, p. 3051. doi: 10.1016/S1003-6326(22)66002-3
|
[2] |
M.F. Cai, D.L. Xue, and F.H. Ren, Current status and development strategy of metal mines, Chin. J. Eng., 41(2019), No. 4, p. 419. doi: 10.13374/j.issn2095-9389.2019.04.001
|
[3] |
J. Wei, J.J. Zhang, X. Wu, and Z.Y. Song, Governance in mining enterprises: An effective way to promote the intensification of resources—taking coal resources as an example, Resour. Policy, 76(2022), art. No. 102623. doi: 10.1016/j.resourpol.2022.102623
|
[4] |
J.Y. Peng, S. Zhang, Y.Y. Han, B.T. Bate, H. Ke, and Y.M. Chen, Soil heavy metal pollution of industrial legacies in China and health risk assessment, Sci. Total Environ., 816(2022), art. No. 151632. doi: 10.1016/j.scitotenv.2021.151632
|
[5] |
X.J. Liu, H.L. Hou, Y.X. Sun, and P. Zhou, Thinking about the connotation and realization path for green mining in China, Min. Res. Develop., 41(2021), No. 10, p. 181.
|
[6] |
M.F. Cai, P. Li, W.H. Tan, and F.H. Ren, Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China, Engineering, 7(2021), No. 11, p. 1513. doi: 10.1016/j.eng.2021.07.010
|
[7] |
H.J. Lu, C.C. Qi, Q.S. Chen, D.Q. Gan, Z.L. Xue, and Y.J. Hu, A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits, J. Cleaner Prod., 188(2018), p. 601. doi: 10.1016/j.jclepro.2018.04.041
|
[8] |
H.F. Qiu, F.S. Zhang, L. Liu, D.Z. Hou, and B.B. Tu, Influencing factors on strength of waste rock tailing cemented backfill, Geofluids, 2020(2020), art. No. 8847623.
|
[9] |
T.T. Xu, C.Y. Kang, and H. Zhang, China’s efforts towards carbon neutrality: does energy-saving and emission-reduction policy mitigate carbon emissions, J. Environ. Manage., 316(2022), art. No. 115286. doi: 10.1016/j.jenvman.2022.115286
|
[10] |
L.J. Dong, X.J. Tong, X.B. Li, J. Zhou, S.F. Wang, and B. Liu, Some developments and new insights of environmental problems and deep mining strategy for cleaner production in mines, J. Cleaner Prod., 210(2019), p. 1562. doi: 10.1016/j.jclepro.2018.10.291
|
[11] |
Y. Wang, C.H. Guo, X.J. Chen, et al., Carbon peak and carbon neutrality in China: goals, implementation path, and prospects, China Geol., 4(2021), No. 4, p. 1.
|
[12] |
A.X. Wu, G.Z. Jiang, and Y.M. Wang, Review and development trend of new type filling cementing materials in mines, Met. Mine, 3(2018), p. 1.
|
[13] |
G.R. Feng, Z.H. Wang, T.Y. Qi, et al., Effect of velocity on flow properties and electrical resistivity of cemented coal gangue-fly ash backfill (CGFB) slurry in the pipeline, Powder Technol., 396(2022), p. 191. doi: 10.1016/j.powtec.2021.10.050
|
[14] |
R.F. Yan, S.H. Yin, J.M. Liu, L. Zou, Y.B. Mo, and Y.Y. Kou, Rheological properties and calculation models of coarse aggregate paste with polypropylene fiber, J. Cent. South Univ. Sci. Technol., 53(2022), No. 4, p. 1450.
|
[15] |
W. Liang, K. Li, J.S. Luo, Y.L. Zhe, M.T. Xu, and F.S. Feng, Experimental study on the interaction between backfill and surrounding rock in the overhand cut-and-fill method, Minerals, 12(2022), No. 8, art. No. 1017. doi: 10.3390/min12081017
|
[16] |
G.L. Xue and E. Yilmaz, Strength, acoustic, and fractal behavior of fiber reinforced cemented tailings backfill subjected to triaxial compression loads, Constr. Build. Mater., 338(2022), art. No. 127667. doi: 10.1016/j.conbuildmat.2022.127667
|
[17] |
B. Sirait, R.K. Wattimena, and N.P. Widodo, Rockburst prediction of a cut and fill mine by using energy balance and induced stress, Procedia Earth Planet. Sci., 6(2013), p. 426. doi: 10.1016/j.proeps.2013.01.056
|
[18] |
J.M. Zhu, Z.W. Ma, J.H. Xu, and J.N. Wu, Research on the technology of filling and repeated mining in thick coal seam affected by small mine gob area, Procedia Eng., 26(2011), p. 1150. doi: 10.1016/j.proeng.2011.11.2285
|
[19] |
G.D. Lu, X.G. Yang, S.C. Qi, G. Fan, and J.W. Zhou, Coupled chemo-hydro-mechanical effects in one-dimensional accretion of cemented mine fills, Eng. Geol., 267(2020), art. No. 105495. doi: 10.1016/j.enggeo.2020.105495
|
[20] |
X.G. Wang and K.Y. Tang, Overview of cut and fill method for mines, Modern Min, 12(2008), p. 2.
|
[21] |
H. Hu and H.H. Sun, Development of backfill technology and the new backfill process using paste-like material, China Min. Mag., 10(2001), No. 6, p. 47.
|
[22] |
L. Liu, Z.Y. Fang, B. Zhang, M. Wang, H.F. Qiu, and X.Y. Zhang, Development history and basic categories of mine backfill technology, Met. Mine, 3(2021), p. 10.
|
[23] |
X.M. Wang, A Study of Filling Materials and Pipeline Transportation Systems in Deep Mines [Dissertation], Central South University, Changsha, 2005, p. 9.
|
[24] |
S. Cao, G.L. Xue, E. Yilmaz, and Z.Y. Yin, Assessment of rheological and sedimentation characteristics of fresh cemented tailings backfill slurry, Int. J. Min. Reclam. Environ., 35(2021), No. 5, p. 319. doi: 10.1080/17480930.2020.1826092
|
[25] |
D.Q. Ding, Research on the Theory and Technology of Filling the Underground Mining Area with Paste [Dissertation], Central South University, Changsha, 2007, p. 3.
|
[26] |
R.C. Yu, Development and innovation of cemented filling technology in China, China Min. Eng., 39(2010), No. 5, p. 3.
|
[27] |
S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Cleaner Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
|
[28] |
H.Y. Cheng, A.X. Wu, S.C. Wu, et al., Research status and development trend of solid waste backfill in metal mines, Chin. J. Eng., 44(2022), No. 1, p. 13.
|
[29] |
C.L. Wang, Z.Z. Ren, Z.K. Huo, et al., Properties and hydration characteristics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag, Alex. Eng. J., 60(2021), No. 6, p. 4961. doi: 10.1016/j.aej.2020.12.058
|
[30] |
L. Liu, J. Xin, B. Zhang, X.Y. Zhang, M. Wang, H.F. Qiu, and L. Chen, Basic theories and applied exploration of functional backfill in mines, J. China Coal Soc., 43(2018), No. 7, p. 1811.
|
[31] |
C.C. Qi, X.Y. Yang, G.C. Li, Q.S. Chen, and Y.T. Sun, Research status and perspectives of the application of artificial intelligence in mine backfilling, J. China Coal Soc., 46(2021), No. 2, p. 688.
|
[32] |
J.J. Li, E. Yilmaz, and S. Cao, Influence of industrial solid waste as filling material on mechanical and microstructural characteristics of cementitious backfills, Constr. Build. Mater., 299(2021), art. No. 124288. doi: 10.1016/j.conbuildmat.2021.124288
|
[33] |
J.L. Wu, Experimental Research on High Calcium CFB Desulfurization Ash as Raw Material and Admixture of Sulphoaluminate Cement [Dissertation], Zhejiang University, Hangzhou, 2021, p. 6-7.
|
[34] |
L.N. Xiao, Effect of mechanical-chemical coupling activation on pozzolanic activity of copper tailings, Bull. Chin. Ceram. Soc., 39(2020), No. 11, p. 3595.
|
[35] |
G. Yao, Q. Wang, Y.W. Su, J.X. Wang, J. Qiu, and X.J. Lyu, Mechanical activation as an innovative approach for the preparation of pozzolan from iron ore tailings, Miner. Eng., 145(2020), art. No. 106068. doi: 10.1016/j.mineng.2019.106068
|
[36] |
Q.M. Lu, Z. Wang, R.L. Zhang, and H.Q. Han, Excitation function of chemical admixture on fly ash-slag-cement cementitious system, Bull. Chin. Ceram. Soc., 37(2018), No. 8, p. 2516.
|
[37] |
H. Nguyen, E. Adesanya, K. Ohenoja, L. Kriskova, Y. Pontikes, P. Kinnunen, and M. Illikainen, Byproduct-based ettringite binder – A synergy between ladle slag and gypsum, Constr. Build. Mater., 197(2019), p. 143. doi: 10.1016/j.conbuildmat.2018.11.165
|
[38] |
Z.Y. Zhao, K.H. Guo, and X.L. Wang, A binder prepared by low-reactivity blast furnace slags for cemented paste backfill: Influence of super-fine fly ash and chemical additives, Constr. Build. Mater., 327(2022), art. No. 126988. doi: 10.1016/j.conbuildmat.2022.126988
|
[39] |
Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191. doi: 10.1007/s12613-020-1977-4
|
[40] |
X.B. Yang, Y.D. Wang, Q. Gao, J.Y. He, and L. Qu, Research on a new cementitious materials based on desulphurization ash and fly ash and its application in Jinchuan Mine, Multipurp. Util. Miner. Resour., 4(2019), No. 4, p. 130.
|
[41] |
B.L. Xiao, Z.Q. Yang, D.X. Chen, and Q.A. Gao, Impacts of slag-based-binder fineness on strength in mining backfill, Sci. Sin. Technol., 49(2019), No. 4, p. 402. doi: 10.1360/N092018-00109
|
[42] |
P. Wu, Q. Wang, Q. Liu, and X.J. Lv, Preparation and hydration characteristics of soda residue-slag based cementitious materials, J. China Univ. Min. Technol., 51(2022), No. 4, p. 802.
|
[43] |
J.S. Qiu, K. Cheng, R.Y. Zhang, Y. Gao, and X. Guan, Study on the influence mechanism of activated coal gangue powder on the properties of filling body, Constr. Build. Mater., 345(2022), art. No. 128071. doi: 10.1016/j.conbuildmat.2022.128071
|
[44] |
T. Yılmaz, B. Ercikdi, and F. Cihangir, Evaluation of the neutralization performances of the industrial waste products (IWPs) in sulphide-rich environment of cemented paste backfill, J. Environ. Manage., 258(2020), art. No. 110037. doi: 10.1016/j.jenvman.2019.110037
|
[45] |
L. Dong, Q. Gao, S.Q. Nan, and J.Q. Du, Performance and hydration mechanism of new super fine cemented whole-tailings backfilling materials, J. Cent. South Univ. Sci. Technol., 44(2013), No. 4, p. 1573.
|
[46] |
H. Li and H.J. Wang, Influence law of compound admixture on the mechanical properties of filling slurry before and after curing, Acta Mater. Compos. Sin., 39(2022), No. 8, p. 3940.
|
[47] |
Y. Li, H.H. Sun, Y.H. Zhao, and N. Wang, Research of formation mechanism on cementitious reactivity of water-cooled slag, Chin. J. Proc. Eng., 7(2007), No. 1, p. 79.
|
[48] |
G. Xie, Y.L. Suo, L. Liu, et al., Mechanical grinding activation of modified magnesium slag and its use as backfilling cementitious material, Case Stud. Constr. Mater., 18(2023), art. No. e01778.
|
[49] |
B.S. Gebregziabiher, R. Thomas, and S. Peethamparan, Very early-age reaction kinetics and microstructural development in alkali-activated slag, Cem. Concr. Compos., 55(2015), p. 91. doi: 10.1016/j.cemconcomp.2014.09.001
|
[50] |
D.F. Zhao, Reactive MgO-modified slag-based binders for cemented paste backfill and potential heavy-metal leaching behavior, Constr. Build. Mater., 298(2021), art. No. 123894. doi: 10.1016/j.conbuildmat.2021.123894
|
[51] |
L. Liu, S.S. Ruan, Z.Y. Fang, D.Z. Hou, B. Zhang, and W.J. Sun, Modification of magnesium slag and its application in the field of mine filling, J. China Coal Soc., 46(2021), No. 12, p. 3833.
|
[52] |
F. Wang, Q.Q. Zheng, G.Q. Zhang, C.L. Wang, F. Cheng, and G. Lin, Preparation and hydration mechanism of mine cemented paste backfill material for secondary smelting water-granulated nickel slag, J. New Mater. Electrochem. Syst., 23(2020), No. 1, p. 52.
|
[53] |
T.Y. Qi, G.R. Feng, Y.J. Zhang, J. Guo, and Y.X. Guo, Effects of fly ash content on properties of cement paste backfilling, J. Residuals Sci. Technol., 12(2015), No. 3, p. 133. doi: 10.12783/issn.1544-8053/12/3/3
|
[54] |
Y. Zhao, A. Taheri, M. Karakus, Z.W. Chen, and A. Deng, Effects of water content, water type and temperature on the rheological behaviour of slag-cement and fly ash-cement paste backfill, Int. J. Min. Sci. Technol., 30(2020), No. 3, p. 271. doi: 10.1016/j.ijmst.2020.03.003
|
[55] |
H.X. Ding and S.Y. Zhang, Quicklime and calcium sulfoaluminate cement used as mineral accelerators to improve the properties of cemented paste backfill with a high volume of fly ash, Materials, 13(2020), No. 18, art. No. 4018. doi: 10.3390/ma13184018
|
[56] |
Z.Q. Huang, E. Yilmaz, and S.A. Cao, Analysis of strength and microstructural characteristics of mine backfills containing fly ash and desulfurized gypsum, Minerals, 11(2021), No. 4, art. No. 409. doi: 10.3390/min11040409
|
[57] |
L. Liu, S.S. Ruan, C.C. Qi, et al., Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill, J. Cleaner Prod., 279(2021), art. No. 123684. doi: 10.1016/j.jclepro.2020.123684
|
[58] |
Y.H. Sheng, G.B. Li, and H.Q. Jiang, Effects of superplasticizers and fly ash on rheological properties of cemented tailings backfill, J. Chongqing Univ., 43(2020), No. 4, p. 60.
|
[59] |
H.B. Wei, Development and Application of Fly Ash-Slag Filling Cementing Materials by High-Value Utilization of Low-Quality Solid Waste [Dissertation], University of Science and Technology Beijing, Beijing, 2021, p. 51.
|
[60] |
X.F. Zhou, C.Y. Lang, X. Chen, and L.Y. Wen, Influence of activator on microstructure of the desulfurization ash cement, Bull. Chin. Ceram. Soc., 34(2015), No. 5, p. 1435.
|
[61] |
M. Nag and T. Shimaoka, A novel and sustainable technique to immobilize lead and zinc in MSW incineration fly ash by using pozzolanic bottom ash, J. Environ. Manage., 329(2023), art. No. 117036. doi: 10.1016/j.jenvman.2022.117036
|
[62] |
Y.L. Liu, Z.Y. Mo, Y.P. Su, and Y.H. Chen, State-of-the-art controlled low-strength materials using incineration industrial by-products as cementitious materials, Constr. Build. Mater., 345(2022), art. No. 128391. doi: 10.1016/j.conbuildmat.2022.128391
|
[63] |
J.J. Li, E. Yilmaz, and S. Cao, Influence of solid content, cement/tailings ratio, and curing time on rheology and strength of cemented tailings backfill, Minerals, 10(2020), No. 10, art. No. 922. doi: 10.3390/min10100922
|
[64] |
C.D. Min, Y. Shi, and Z.X. Liu, Properties of cemented phosphogypsum (PG) backfill in case of partially substitution of composite Portland cement by ground granulated blast furnace slag, Constr. Build. Mater., 305(2021), art. No. 124786. doi: 10.1016/j.conbuildmat.2021.124786
|
[65] |
Q.S. Chen, Q.L. Zhang, C.C. Qi, A. Fourie, and C.C. Xiao, Recycling phosphogypsum and construction demolition waste for cemented paste backfill and its environmental impact, J. Cleaner Prod., 186(2018), p. 418. doi: 10.1016/j.jclepro.2018.03.131
|
[66] |
K.W. Rong, W.T. Lan, and H.Y. Li, Industrial experiment of goaf filling using the filling materials based on hemihydrate phosphogypsum, Minerals, 10(2020), No. 4, art. No. 324. doi: 10.3390/min10040324
|
[67] |
W. Chen, S.S. Yuan, and B. Yuan, Development of red mud activated fly ash-based backfilling material and its activation mechanism, J. Wuhan Univ. Technol., 41(2019), p. 20.
|
[68] |
J. Zhang, S.C. Li, and Z.F. Li, Investigation the synergistic effects in quaternary binder containing red mud, blast furnace slag, steel slag and flue gas desulfurization gypsum based on artificial neural networks, J. Cleaner Prod., 273(2020), art. No. 122972. doi: 10.1016/j.jclepro.2020.122972
|
[69] |
S.A. Li, R. Zhang, R. Feng, B.Y. Hu, G.J. Wang, and H.X. Yu, Feasibility of recycling bayer process red mud for the safety backfill mining of layered soft bauxite under coal seams, Minerals, 11(2021), No. 7, art. No. 722. doi: 10.3390/min11070722
|
[70] |
Z.K. Wang, Y.M. Wang, L.B. Wu, et al., Effective reuse of red mud as supplementary material in cemented paste backfill: durability and environmental impact, Constr. Build. Mater., 328(2022), art. No. 127002. doi: 10.1016/j.conbuildmat.2022.127002
|
[71] |
Y.N. Tang, J.X. Fu, W.D. Song, and Y.F. Zhang, Mechanical properties and crack evolution of interbedded cemented tailings backfill, Chin. J. Eng., 42(2020), No. 10, p. 1286.
|
[72] |
X.P. Song, Y.X. Hao, S. Wang, L. Zhang, W. Liu, and J.B. Li, Mechanical properties, crack evolution and damage characteristics of prefabricated fractured cemented paste backfill under uniaxial compression, Constr. Build. Mater., 330(2022), art. No. 127251. doi: 10.1016/j.conbuildmat.2022.127251
|
[73] |
B.Y. Li, J.X. Zhang, H. Yan, N. Zhou, and M. Li, Experimental investigation into the thermal conductivity of gangue-cemented paste backfill in mine application, J. Mater. Res. Technol., 16(2022), p. 1792. doi: 10.1016/j.jmrt.2021.12.123
|
[74] |
Y.X. Guo, H.Y. Ran, G.R. Feng, X.J. Du, Y.H. Zhao, and W.S. Xie, Deformation and instability properties of cemented gangue backfill column under step-by-step load in constructional backfill mining, Environ. Sci. Pollut. Res., 29(2022), No. 2, p. 2325. doi: 10.1007/s11356-021-15638-z
|
[75] |
J. Wang, J.X. Fu, and W.D. Song, Mechanical properties and microstructure of layered cemented paste backfill under triaxial cyclic loading and unloading, Constr. Build. Mater., 257(2020), art. No. 119540. doi: 10.1016/j.conbuildmat.2020.119540
|
[76] |
D. Wu, W.T. Hou, S. Liu, and H.B. Liu, Mechanical response of barricade to coupled THMC behavior of cemented paste backfill, Int. J. Concr. Struct. Mater., 14(2020), No. 1, art. No. 39. doi: 10.1186/s40069-020-00413-0
|
[77] |
J.F. Hou, Z.P. Guo, L.J. Zhao, W.Z. Liu, and Y.X. Zhang, Study on the damage statistical strength criterion of backfill with crack under thermo-mechanical coupling, Int. J. Green Energy, 17(2020), No. 8, p. 501. doi: 10.1080/15435075.2020.1763359
|
[78] |
X.P. Song, J.B. Li, S. Wang, et al., Study of mechanical behavior and cracking mechanism of prefabricated fracture cemented paste backfill under different loading rates from the perspective of energy evolution, Constr. Build. Mater., 361(2022), art. No. 129737. doi: 10.1016/j.conbuildmat.2022.129737
|
[79] |
F.G. Yang, F. Wu, B.G. Yang, L.T. Li, and Q. Gao, Preparation and performance of composite activated slag-based binder for cemented paste backfill, Chemosphere, 309(2022), art. No. 136649. doi: 10.1016/j.chemosphere.2022.136649
|
[80] |
X.P. Song, S. Wang, M. Wei, et al., Response of dynamic mechanical properties of alkali rice straw based cemented tailings backfill under SHPB impact load, Chin. J. Nonferrous Met., 31(2021), No. 9, p. 2583.
|
[81] |
H. Kolsky, An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc.:Sect. B, 62(1949), No. 11, p. 678.
|
[82] |
X.B. Li, Z.L. Zhou, Z.Y. Ye, et al., Study of rock mechanical characteristics under coupled static and dynamic loads, Chin. J. Rock Mech. Eng., 27(2008), No. 7, p. 1390.
|
[83] |
K. Liu, Q.B. Zhang, G. Wu, J.C. Li, and J. Zhao, Dynamic mechanical and fracture behaviour of sandstone under multiaxial loads using a triaxial Hopkinson bar, Rock Mech. Rock Eng., 52(2019), No. 7, p. 2178.
|
[84] |
B.P. Zou, Z.Y. Luo, F.J. Xu, H.N. Ding, Z.G. Tao, and M.C. He. Experimental study on impact dynamic characteristics of deep sandstone under thermal-hydraulic-mechanical coupling conditions, Chin. J. Rock Mech. Eng., 39(2020), No. 9, p. 1750.
|
[85] |
K.W. Xia, S. Wang, Y. Xu, R. Chen, and B.B. Wu, Advances in experimental studies for deep rock dynamics, Chin. J. Rock Mech. Eng., 40(2021), No. 3, p. 448.
|
[86] |
J.H. Hu, Z. Tao, X.T. Ding, G.P. Wen, Z.S. Wen, and M.M. Guo, Dynamic response mechanism of a rock-filling interfacial coupling body to blasting in it, Explos. Shock Waves, 41(2021), No. 8, p. 164.
|
[87] |
F.Q. Gong, X.F. Si, X.B. Li, and S.Y. Wang, Dynamic triaxial compression tests on sandstone at high strain rates and low confining pressures with split Hopkinson pressure bar, Int. J. Rock Mech. Min. Sci., 113(2019), p. 211. doi: 10.1016/j.ijrmms.2018.12.005
|
[88] |
D. Zheng, W.D. Song, S. Cao, and J.J. Li, Dynamical mechanical properties and microstructure characteristics of cemented tailings backfill considering coupled strain rates and confining pressures effects, Constr. Build. Mater., 320(2022), art. No. 126321. doi: 10.1016/j.conbuildmat.2022.126321
|
[89] |
P. Wang, T.B. Yin, and B.W. Hu, Dynamic tensile strength and failure mechanisms of thermally treated sandstone under dry and water-saturated conditions, Trans. Nonferrous Met. Soc. China, 30(2020), No. 8, p. 2217. doi: 10.1016/S1003-6326(20)65374-2
|
[90] |
S. Cao, Research on Structural Characteristics and Dynamic Effects of Cemented Tailings Backfilling and Its Application [Dissertation], University of Science and Technology Beijing, Beijing, 2017, p. 58.
|
[91] |
G.L. Xue, E. Yilmaz, G.R. Feng, S. Cao, and L.J. Sun, Reinforcement effect of polypropylene fiber on dynamic properties of cemented tailings backfill under SHPB impact loading, Constr. Build. Mater., 279(2021), art. No. 122417. doi: 10.1016/j.conbuildmat.2021.122417
|
[92] |
E.Y. Liu, Q.L. Zhang, Y. Feng, and J.W. Zhao, Experimental study of static and dynamic mechanical properties of double-deck backfill body, Environ. Earth Sci., 76(2017), No. 20, art. No. 689. doi: 10.1007/s12665-017-7011-0
|
[93] |
X. Chen, X.Z. Shi, J. Zhou, E.M. Li, P.Y. Qiu, and Y.G. Gou, High strain rate compressive strength behavior of cemented paste backfill using split Hopkinson pressure bar, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 387. doi: 10.1016/j.ijmst.2021.03.008
|
[94] |
W. Yang, Q.L. Zhang, S. Yang, and X.M. Wang, Mechanical property of high concentration total tailing cemented backfilling under dynamic loading, J. Cent. South Univ. Sci. Technol. 48(2017), No. 1, p. 156.
|
[95] |
Y.F. Hu, K.Q. Li, B. Han, H.Y. Li, and J.T. Zhao, Strength development and optimization analysis of mixed aggregate backfill based on RSM-DF, J. Cent. South Univ. Sci. Technol., 53(2022), No. 2, p. 620.
|
[96] |
J.Y. Wu, H.W. Jing, Q. Yin, B. Meng, and G.S. Han, Strength and ultrasonic properties of cemented waste rock backfill considering confining pressure, dosage and particle size effects, Constr. Build. Mater., 242(2020), art. No. 118132. doi: 10.1016/j.conbuildmat.2020.118132
|
[97] |
Y.H. Zhao, Y.X. Guo, G.R. Feng, C.Q. Li, W.S. Xie, and C.L. Zhang, Study on strength and deformation characteristics of cemented gangue backfill body under the coupling action of load and salt erosion, Constr. Build. Mater., 342(2022), art. No. 128003. doi: 10.1016/j.conbuildmat.2022.128003
|
[98] |
B. Koohestani, A.K. Darban, E. Darezereshki, P. Mokhtari, E. Yilmaz, and E. Yilmaz, The influence of sodium and sulfate ions on total solidification and encapsulation potential of iron-rich acid mine drainage in silica gel, J. Environ. Chem. Eng., 6(2018), No. 2, p. 3520. doi: 10.1016/j.jece.2018.05.037
|
[99] |
N. Zhou, C.W. Dong, J.X. Zhang, G.H. Meng, and Q.Q. Cheng, Influences of mine water on the properties of construction and demolition waste-based cemented paste backfill, Constr. Build. Mater., 313(2021), art. No. 125492. doi: 10.1016/j.conbuildmat.2021.125492
|
[100] |
G.Z. Jiang, A.X. Wu, H. Li, Y.M. Wang, and H.J. Wang, Long-term strength performance of sulfur tailings filling and its affecting factors, J. Cent. South Univ. Sci. Technol., 49(2018), No. 6, p. 1504.
|
[101] |
Z.W. Du, S.J. Chen, D.W. Yin, D.H. Yao, and Z. Zhang, Experimental study of stability of paste backfill under chloride erosion environment, J. China Univ. Min. Technol., 50(2021), No. 3, p. 532.
|
[102] |
M. Tao, D.M. Lu, Y. Shi, and C.Q. Wu, Utilization and life cycle assessment of low activity solid waste as cementitious materials: A case study of titanium slag and granulated blast furnace slag, Sci. Total Environ., 849(2022), art. No. 157797. doi: 10.1016/j.scitotenv.2022.157797
|
[103] |
Z.G. Xiu, S.H. Wang, Y.C. Ji, F.L. Wang, and F.Y. Ren, Experimental study on the triaxial mechanical behaviors of the cemented paste backfill: Effect of curing time, drainage conditions and curing temperature, J. Environ. Manage., 301(2022), art. No. 113828. doi: 10.1016/j.jenvman.2021.113828
|
[104] |
T. Kasap, E. Yilmaz, N.U. Guner, and M. Sari, Recycling dam tailings as cemented mine backfill: Mechanical and geotechnical properties, Adv. Mater. Sci. Eng., 2022(2022), art. No. 6993068. doi: 10.1155/2022/6993068
|
[105] |
X.M. Wei, L.J. Guo, C.H. Li, L.X. Zhang, W.C. Luo, and R. Liu, Study of space variation law of strength of high stage cemented backfill, Rock Soil Mech., Suppl.2(2018), p. 45.
|
[106] |
G.C. Zhang, Z.Q. Yang, Q. Gao, G.L. Xue, and S.H. Yin, Study on in-situ backfilling test with total tailings from iron mine with tailings consolidation powder, Min. Metall. Eng., 34(2014), No. 3, p. 19.
|
[107] |
T. Belem and M. Benzaazoua, Design and application of underground mine paste backfill technology, Geotech. Geol. Eng., 26(2008), No. 2, p. 175. doi: 10.1007/s10706-007-9167-y
|
[108] |
D.Q. Gan, Y.J. Zhang, Z.Y. Liu, and H.K. Sun, Study on multi-scale mechanical properties of cemented backfill under different curing ages, Min. Res. Develop., 42(2022), No. 12, p. 7.
|
[109] |
A.A. Wang, S. Cao, and E. Yilmaz, Effect of height to diameter ratio on dynamic characteristics of cemented tailings backfills with fiber reinforcement through impact loading, Constr. Build. Mater., 322(2022), art. No. 126448. doi: 10.1016/j.conbuildmat.2022.126448
|
[110] |
Y.B. Hu, W.P. Li, X.M. Chen, H.Z. Xu, and S.L. Liu, Temporal and spatial evolution characteristics of fracture distribution of floor strata in deep coal seam mining, Eng. Fail. Anal., 132(2022), art. No. 105931. doi: 10.1016/j.engfailanal.2021.105931
|
[111] |
C.X. Liu, J.Q. Jiang, F.S. Liu, and S.H. Wang, Fractal study of scale effect in microscopic, mesoscopic and macroscopic states for fracture mechanism of rock materials, Rock Soil Mech., 29(2008), No. 10, p. 2619.
|
[112] |
B. Pal and A. Ramaswamy, A multi-physics-based approach to predict mechanical behavior of concrete element in a multi-scale framework, Mech. Mater., 176(2023), art. No. 104509. doi: 10.1016/j.mechmat.2022.104509
|
[113] |
K. Zhao, J. Wu, Y.J. Yan, Y. Zhou, J. Yang, and Z.W. He, Multi-scale characteristics of crack evolution of cemented tailings backfill, Chin. J. Rock Mech. Eng., 41(2022), No. 8, p. 1626.
|
[114] |
Y.H. Zhao, H.Y. Ran, G.R. Feng, Y.X. Guo, and Y.J. Fan, Damage evolution and failure characteristics of cemented gangue backfill body with different height-width ratios under uniaxial compression, J. Min. Safety Eng., 39(2022), No. 4, p. 674.
|
[115] |
X.P. Song, Y.X. Hao, S. Wang, et al., Dynamic mechanical response and damage evolution of cemented tailings backfill with alkalized rice straw under SHPB cycle impact load, Constr. Build. Mater., 327(2022), art. No. 127009. doi: 10.1016/j.conbuildmat.2022.127009
|
[116] |
S. Cao, G.L. Xue, and E. Yilmaz, Flexural behavior of fiber reinforced cemented tailings backfill under three-point bending, IEEE Access, 7(2019), p. 139317. doi: 10.1109/ACCESS.2019.2943479
|
[117] |
K. Zhao, X. Yu, S.T. Zhu, et al., Acoustic emission fractal characteristics and mechanical damage mechanism of cemented paste backfill prepared with tantalum niobium mine tailings, Constr. Build. Mater., 258(2020), art. No. 119720. doi: 10.1016/j.conbuildmat.2020.119720
|
[118] |
L. Liu, M. Yang, X.B. Zhang, J.R. Mao, and P. Chai, LNMR experimental study on the influence of gas pressure on methane adsorption law of middle-rank coal, J. Nat. Gas Sci. Eng., 91(2021), art. No. 103949. doi: 10.1016/j.jngse.2021.103949
|
[119] |
W. Sun, A.X. Wu, K.P. Hou, Y. Yang, and L. Liu, Application of X-Ray CT technology in the pore structure study of subsidence area backfilling body, Rock Soil Mech., 38(2017), No. 12, p. 3635.
|
[120] |
Y. Wang, H.J. Wang, X.L. Zhou, X.F. Yi, Y.G. Xiao, and X.M. Wei, In situ X-ray CT investigations of meso-damage evolution of cemented waste rock-tailings backfill (CWRTB) during triaxial deformation, Minerals, 9(2019), No. 1, art. No. 52. doi: 10.3390/min9010052
|
[121] |
X.F. Yi, C.K. Liu, and Y. Wang, Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning, Rock Soil Mech., 41(2020), No. 10, p. 3365.
|
[122] |
A.E. Belibi Tana, S.H. Yin, and L.M. Wang, Investigation on mechanical characteristics and microstructure of cemented whole tailings backfill, Minerals, 11(2021), No. 6, art. No. 592. doi: 10.3390/min11060592
|
[123] |
D.J. Zou, Z.C. Que, W. Cui, X. Wang, Y.H. Guo, and S.D. Zhang, Feasibility of recycling autoclaved aerated concrete waste for partial sand replacement in mortar, J. Build. Eng., 52(2022), art. No. 104481. doi: 10.1016/j.jobe.2022.104481
|
[124] |
F. Du, K. Wang, X.L. Dong, and J.P. Wei, Numerical simulation of damage and failure of coal-rock combination based on CT three-dimensional reconstruction, J. China Coal Soc., 46(2021), No. 1, p. 253.
|
[125] |
T.Y. Wei, X.H. Wang, T. Lv, D.W. Hu, H. Zhou, and W. Hong, Analysis of the influence of wetting expansion and sand mixing rate on the THM coupling process of hybrid buffer material, Rock Soil Mech., 43(2022), No. 2, p. 549.
|
[126] |
H. Zhang, S. Cao, and E. Yilmaz, Carbon nanotube reinforced cementitious tailings composites: Links to mechanical and microstructural characteristics, Constr. Build. Mater., 365(2023), art. No. 130123. doi: 10.1016/j.conbuildmat.2022.130123
|
[127] |
M. Sari, E. Yilmaz, T. Kasap, and N.U. Guner, Strength and microstructure evolution in cemented mine backfill with low and high pH pyritic tailings: Effect of mineral admixtures, Constr. Build. Mater., 328(2022), art. No. 127109. doi: 10.1016/j.conbuildmat.2022.127109
|
[128] |
B.W. Wang, L.J. Gao, W.H. Zhao, Y.N. Li, W. Ding, and Z. Li, Microscopic experiment of consolidating tailings by Linglong cementitious material, Int. J. Min. Sci. Technol., 4(2019), No. 6, p. 524.
|
[129] |
B.X. Yan, H.W. Jia, E. Yilmaz, X.P. Lai, P.F. Shan, and C. Hou, Numerical study on microscale and macroscale strength behaviors of hardening cemented paste backfill, Constr. Build. Mater., 321(2022), art. No. 126327. doi: 10.1016/j.conbuildmat.2022.126327
|
[130] |
A. Loykaew and S. Utara, Effect of acidic and sulfated environments on phase transformation, compressive strength and microstructure of natural rubber latex-modified cement pastes, J. Mater. Res. Technol., 9(2020), No. 6, p. 15496. doi: 10.1016/j.jmrt.2020.11.016
|
[131] |
W.B. Xu, B. Liu, and W.L. Wu, Strength and deformation behaviors of cemented tailings backfill under triaxial compression, J. Cent. South Univ., 27(2020), No. 12, p. 3531. doi: 10.1007/s11771-020-4568-7
|
[132] |
China State Administration for Market Regulation and China National Standardization Administration, GB/T 39489-2020: Technical Specification for the Total Tailings Paste Backfill, China Quality and Standards Publishing & Media Co., Ltd, Beijing, 2020.
|
[133] |
Ministry of Construction of the People’s Republic of China and China State General Administration for Quality Supervision and Inspection and Quarantine, GB/T 50080-2016: Standard for Test Method of Performance on Ordinary Fresh Concrete, China Quality and Standards Publishing & Media Co., Ltd, Beijing, 2020.
|
[134] |
Z.P. Yan, S.H. Yin, X. Chen, and L.M. Wang, Rheological properties and wall-slip behavior of cemented tailing-waste rock backfill (CTWB) paste, Constr. Build. Mater., 324(2022), art. No. 126723. doi: 10.1016/j.conbuildmat.2022.126723
|
[135] |
B.Q. Yan, F.H. Ren, M.F. Cai, and C. Qiao, Influence of new hydrophobic agent on the mechanical properties of modified cemented paste backfill, J. Mater. Res. Technol., 8(2019), No. 6, p. 5716. doi: 10.1016/j.jmrt.2019.09.039
|
[136] |
C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
|
[137] |
Z.Q. Huang, S. Cao, and E. Yilmaz, Investigation on the flexural strength, failure pattern and microstructural characteristics of combined fibers reinforced cemented tailings backfill, Constr. Build. Mater., 300(2021), art. No. 124005. doi: 10.1016/j.conbuildmat.2021.124005
|
[138] |
D.V. Boger, Rheology of slurries and environmental impacts in the mining industry, Annu. Rev. Chem. Biomol. Eng., 4(2013), p. 239. doi: 10.1146/annurev-chembioeng-061312-103347
|
[139] |
S.H. Yin, J.M. Liu, W. Chen, Y.J. Shao, L.B. Wu, and X.T. Wang, Rheological properties of coarse aggregate at low temperature and its regression models, J. Cent. South Univ. Sci. Technol., 51(2020), No. 12, p. 3379.
|
[140] |
F. Wu, F.H. Yang, B.L. Xiao, and Q. Gao, Characterization of rheological property and its application of high concentration and mixed aggregate filling slurry based on spread, J. Cent. South Univ. Sci. Technol., 53(2022), No. 8, p. 3104.
|
[141] |
L. Liu, Z.Y. Fang, Y.P. Wu, X.P. Lai, P. Wang, and K.I.I L. Song, Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using electrical resistance tomography, Constr. Build. Mater., 175(2018), p. 270.
|
[142] |
W.T. Lan and A.X. Wu, Derivation and test verification of general equation for pipeline laminar flow, J. Huazhong Univ. Sci. Technol., 47(2019), No. 11, p. 61.
|
[143] |
X.B. Yang, Z.P. Yang, S.H. Yin, and H. Yang, Transportation pressure model and optimization of coarse aggregate paste backfill based on pipe loop test, J. Hunan Univ. (Natural Sci.), 49(2022), No. 5, p. 183.
|
[144] |
Y. Zhao, G.Y. Zhao, D.F. Pei, P. Wu, J. Qiu, and Y. Li, Analysis on connotation, characteristics and type of green mining mode for underground metal mines, Chin. J. Nonferrous Met., 31(2021), No. 12, p. 3700.
|
[145] |
G.Y. Zhao, P. Wu, D.F. Pei, and Y. Zhao, Study on the mining mode in deep metal mines and its technological system based on green mining, Gold, 41(2020), No. 9, p. 58.
|
[146] |
X. Lin, Y. Zhang, Q. Liu, and R. Ou, Thoughts on the layout of mineral resources development under carbon peak and carbon neutrality goals, Min. Res. Develop., 42(2022), No. 6, p. 153.
|
[147] |
Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
|
[148] |
L.J. Su, G.S. Fu, Y.L. Wang, et al., Preparation and performance of a low-carbon foam material of fly-ash-based foamed geopolymer for the goaf filling, Materials, 13(2020), No. 4, art. No. 841. doi: 10.3390/ma13040841
|
[149] |
J.P. Qiu, Y.L. Zhao, H. Long, Z.B. Guo, J. Xing, and X.G. Sun, Low-carbon binder for cemented paste backfill: Flowability, strength and leaching characteristics, Minerals, 9(2019), No. 11, art. No. 707. doi: 10.3390/min9110707
|
[150] |
Ministry of Natural Resources of the People’s Republic of China, Five-year National Plan on Mineral Resources (2016—2020), Ministry of Natural Resources of the People’s Republic of China, Beijing, 2016.
|
[151] |
T. Henckens, Scarce mineral resources: Extraction, consumption and limits of sustainability, Resour. Conserv. Recycl., 169(2021), art. No. 105511. doi: 10.1016/j.resconrec.2021.105511
|
[152] |
H.Y. Zhu, D.D. Zhang, H.H. Goh, et al., Future data center energy-conservation and emission-reduction technologies in the context of smart and low-carbon city construction, Sustain. Cities Soc., 89(2023), art. No. 104322. doi: 10.1016/j.scs.2022.104322
|
[153] |
H.S. Ge, F.H. Gong, Y.Y. Sun, et al., Construction and application of intelligent system in open-pit mine under dual 5G network, Met. Mine, 9(2022), p. 167.
|
[154] |
Z.Q. Wang, Z.J. Qi, Y.P. Kou, J.G. Yang, Z.P. Song, and H.B. Jia, Intelligent filling system enabling new development of mine, Min. Res. Develop., 42(2022), No. 1, p. 156.
|
[155] |
X.Z. Chen, X.C. Yang, L.J. Guo, W.Y. Xu, and C.X. Shi, Intelligent control system design on mine filling and engineering applications, Nonferrous Met. Eng., 12(2022), No. 2, p. 114.
|
[156] |
H. Chang, Z.K. Zhu, B.S. Gu, et al., A study of strength prediction of steel slag tailings-slag based filler based on BP neural network, J. Anhui Univ. Technol. Nat. Sci., 39(2022), No. 3, p. 256.
|
[157] |
J.D, Liu. Thick-Hard Roof Subsidence Control for Slowly Inclined Large-Thick Ore Body Under High Tectonic Stress and Its Interaction Mechanism with Backfilling Body [Dissertation]. China University of Mining and Technology, Xuzhou, 2020, p. 24.
|
[158] |
J.P. Qiu, Z.B. Guo, L. Li, S.Y. Zhang, Y.L. Zhao, and Z.Y. Ma, A hybrid artificial intelligence model for predicting the strength of foam-cemented paste backfill, IEEE Access, 8(2020), p. 84569. doi: 10.1109/ACCESS.2020.2992595
|
[159] |
S.K. Behera, D.P. Mishra, P. Singh, et al., Utilization of mill tailings, fly ash and slag as mine paste backfill material: Review and future perspective, Constr. Build. Mater., 309(2021), art. No. 125120. doi: 10.1016/j.conbuildmat.2021.125120
|
[160] |
Z.J. Wang, Y.P. Kou, Z.B. Wang, Z.H. Wu, and J.R. Guo, Random forest slurry pressure loss model based on loop experiment, Minerals, 12(2022), No. 4, art. No. 447. doi: 10.3390/min12040447
|
[161] |
Y.P. Kou, Y.H. Liu, G.Q. Li, J.E. Hou, L.M. Luan, and H. Wang, Design and implementation of an integrated management system for backfill experimental data, Adv. Civ. Eng., 2022(2022), art. No. 1876435. doi: 10.1155/2022/1876435
|
[162] |
W.Z Sha, C. Zhang, Z. Peng, Y.H. Wei, K. Chen, Refined scanning and modeling technology of chute in Prang Copper Mine, Min. Metall. 29(2020), No. 1, p. 5.
|
[163] |
Q.F. Guo, M.F. Cai, X.H. Wu, X. Xi, M.H. Ma, and J. Zhang. Technological strategies for intelligent mining subject to multifield couplings in deep metal mines toward 2035, Chin. J. Eng., 44(2022), No. 4, p. 476. doi: 10.13374/j.issn2095-9389.2021.10.22.004
|
[164] |
S.M. Chen, W. Wang, R.F. Yan, A.X. Wu, Y.M. Wang, and E. Yilmaz, A joint experiment and discussion for strength characteristics of cemented paste backfill considering curing conditions, Minerals, 12(2022), No. 2, art. No. 211. doi: 10.3390/min12020211
|
[165] |
A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol., 26(2016), No. 5, p. 809. doi: 10.1016/j.ijmst.2016.05.039
|
[166] |
W.Z. Liu, Z.P. Guo, W.P. Huang, S.W. Niu, and J.F. Hou. Experimental study on mechanical characteristics of cemented backfill under triaxial unloading confining pressure after cured at different temperatures, Chin. J. Rock Mech. Eng., 41(2022), No. 11, p. 2279.
|
[167] |
C. Yang, P. Yang, W.S. Lv, and Z.K. Wang, Mechanical performance of confined consolidation on the strength development of cemented paste backfill, Geotech. Geol. Eng., 38(2020), No. 2, p. 1097. doi: 10.1007/s10706-019-01074-x
|
[168] |
F.F. Jiang, H. Zhou, J. Sheng, X.D. Li, and Y.Y. Kou, Temperature effect on shear behavior of ore-backfill coupling specimens at various shear directions, J. Cent. South Univ., 28(2021), No. 10, p. 3173. doi: 10.1007/s11771-021-4841-4
|
[169] |
L.S. Liu, X.C. Yang, C.C. Wan and Y.C. Zhou., Research progress on mechanical problems in deep mining of metal mines, Nonferrous Met. Min. Sec., 74(2022), No. 4, p. 14.
|
[170] |
X.B. Li, Z.W. Cao, J. Zhou, et al., Innovation of mining models and construction of intelligent green mine in hard rock mine: In Kaiyang phosphate mine as an example, Chin. J. Nonferrous Met., 29(2019), No. 10, p. 2364.
|
[171] |
A.A. Wang, S. Cao, and E. Yilmaz, Influence of types and contents of nano cellulose materials as reinforcement on stability performance of cementitious tailings backfill, Constr. Build. Mater., 344(2022), art. No. 128179. doi: 10.1016/j.conbuildmat.2022.128179
|
[172] |
Y. Wang, Q. Na, and L.F. Zhang, Monitoring of in situ properties for cemented tailings backfill that under drainage condition, Constr. Build. Mater., 356(2022), art. No. 129254. doi: 10.1016/j.conbuildmat.2022.129254
|
[173] |
S. Cao, D. Zheng, E. Yilmaz, Z.Y. Yin, G.L. Xue, and F.D. Yang, Strength development and microstructure characteristics of artificial concrete pillar considering fiber type and content effects, Constr. Build. Mater., 256(2020), art. No. 119408. doi: 10.1016/j.conbuildmat.2020.119408
|
[174] |
S.A. Ghoreishi-Madiseh, F. Hassani, and F. Abbasy, Numerical and experimental study of geothermal heat extraction from backfilled mine stopes, Appl. Therm. Eng., 90(2015), p. 1119. doi: 10.1016/j.applthermaleng.2014.11.023
|
[175] |
X.Y. Zhang, D. Wen, Y.J. Zhao, et al., Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine, J. China Coal Soc., 46(2021), No. 6, p. 3158.
|
[176] |
B.X. Yan, W.C. Zhu, C. Hou, E. Yilmaz, and M. Saadat, Characterization of early age behavior of cemented paste backfill through the magnitude and frequency spectrum of ultrasonic P-wave, Constr. Build. Mater., 249(2020), art. No. 118733. doi: 10.1016/j.conbuildmat.2020.118733
|
[177] |
H.P. Xie, Y. Ju, F. Gao, M.Z. Gao, and R. Zhang, Groundbreaking theoretical and technical conceptualization of fluidized mining of deep underground solid mineral resources, Tunn. Undergr. Space Technol., 67(2017), p. 68. doi: 10.1016/j.tust.2017.04.021
|
[178] |
B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081. doi: 10.1016/j.engfailanal.2022.106081
|