留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(11)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  908
  • HTML全文浏览量:  292
  • PDF下载量:  65
  • 被引次数: 0
Miaomiao Chen, Renhai Shi, Zhuangzhuang Liu, Yinghui Li, Qiang Du, Yuhong Zhao, and Jianxin Xie, Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2224-2235. https://doi.org/10.1007/s12613-023-2664-z
Cite this article as:
Miaomiao Chen, Renhai Shi, Zhuangzhuang Liu, Yinghui Li, Qiang Du, Yuhong Zhao, and Jianxin Xie, Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2224-2235. https://doi.org/10.1007/s12613-023-2664-z
引用本文 PDF XML SpringerLink
研究论文

激光粉末床熔融成形Inconel 718合金未熔合缺陷与晶粒生长过程相场法模拟



  • 通讯作者:

    石仁海    E-mail: jxxie@mater.ustb.edu.cn

    刘壮壮    E-mail: renhai.shi.nick@gmail.com

    谢建新    E-mail: liuzhuangzhuang@ustb.edu.cn

文章亮点

  • (1) 提出了一种描述因重熔程度不足而产生LoF缺陷的相场模型
  • (2) 同时实现了L-PBF成形Inconel 718过程中的缺陷抑制与凝固晶粒组织调控
  • (3) 确定了Inconel 718合金晶粒细化且无LoF缺陷的L-PBF成形参数
  • Inconel 718在激光粉末床熔融成形(Laser Powder Bed Fusion, L-PBF)过程中外延生长趋势强烈,组织和性能各向异性显著,对合金构件(如涡轮盘等)的使用性能产生较大影响。L-PBF成形的零部件中的未熔合缺陷(Lack-of-fusion, LoF)同样对合金力学性能不利。为研究激光扫描参数对晶粒外延生长和LoF缺陷形成规律的影响,并获得晶粒细化且无LoF缺陷的参数空间,本文采用有限元法温度场模拟和相场法组织模拟相结合的方法,构建了跨尺度模型,模拟了熔池温度场和晶粒外延生长过程。提出了一种描述因重熔程度不足而产生LoF缺陷的相场模型,可同步实现L-PBF成形过程中的缺陷抑制与组织优化。采用上述模型,确定了当层间旋转角度为0°–90°时,无LoF缺陷且晶粒相对细化、均匀组织的存在于能量密度55.0–62.5 J·mm–3之间。然后进一步计算筛选出一组优化工艺参数,即激光功率280 W,扫描速率 1160 mm·s–1,层间旋转角度67°。在此条件下,L-PBF成形的Inconel 718合金样品的平均晶粒尺寸为7.0 μm,室温抗拉强度UTS和屈服强度YS分别达到(1111 ± 3)MPa、(820 ± 7)MPa。与优化前相比,UTS和YS分别提高8.8%和10.5%。本文提出的相场模型,可为L-PBF成形过程凝固组织调控和LoF缺陷抑制提供指导
  • Research Article

    Phase-field simulation of lack-of-fusion defect and grain growth during laser powder bed fusion of Inconel 718

    + Author Affiliations
    • The anisotropy of the structure and properties caused by the strong epitaxial growth of grains during laser powder bed fusion (L-PBF) significantly affects the mechanical performance of Inconel 718 alloy components such as turbine disks. The defects (lack-of-fusion, LoF) in components processed via L-PBF are detrimental to the strength of the alloy. The purpose of this study is to investigate the effect of laser scanning parameters on the epitaxial grain growth and LoF formation in order to obtain the parameter space in which the microstructure is refined and LoF defect is suppressed. The temperature field of the molten pool and the epitaxial grain growth are simulated using a multiscale model combining the finite element method with the phase-field method. The LoF model is proposed to predict the formation of LoF defects resulting from insufficient melting during L-PBF. Defect mitigation and grain-structure control during L-PBF can be realized simultaneously in the model. The simulation shows the input laser energy density for the as-deposited structure with fine grains and without LoF defects varied from 55.0–62.5 J·mm–3 when the interlayer rotation angle was 0°–90°. The optimized process parameters (laser power of 280 W, scanning speed of 1160 mm·s–1, and rotation angle of 67°) were computationally screened. In these conditions, the average grain size was 7.0 μm, and the ultimate tensile strength and yield strength at room temperature were (1111 ± 3) MPa and (820 ± 7) MPa, respectively, which is 8.8% and 10.5% higher than those of reported. The results indicating the proposed multiscale computational approach for predicting grain growth and LoF defects could allow simultaneous grain-structure control and defect mitigation during L-PBF.
    • loading
    • Supplementary Information-10.1007s12613-023-2664-z.docx
    • [1]
      M.D. Sangid, T.A. Book, D. Naragani, et al., Role of heat treatment and build orientation in the microstructure sensitive deformation characteristics of IN718 produced via SLM additive manufacturing, Addit. Manuf., 22(2018), p. 479.
      [2]
      S.C. Luo, W.P. Huang, H.H. Yang, J.J. Yang, Z.M. Wang, and X.Y. Zeng, Microstructural evolution and corrosion behaviors of Inconel 718 alloy produced by selective laser melting following different heat treatments, Addit. Manuf., 30(2019), art. No. 100875.
      [3]
      H.Z. Deng, L. Wang, Y. Liu, X. Song, F.Q. Meng and S. Huang, Evolution behavior of γ″ phase of IN718 superalloy in temperature/stress coupled field, Int. J. Miner., Metall. Mater., 28(2021), No. 12, p. 1949. doi: 10.1007/s12613-021-2317-z
      [4]
      E. Hosseini and V.A. Popovich, A review of mechanical properties of additively manufactured Inconel 718, Addit. Manuf., 30(2019), art. No. 100877.
      [5]
      H.Y. Chen, D.D. Gu, Q. Ge, et al., Role of laser scan strategies in defect control, microstructural evolution and mechanical properties of steel matrix composites prepared by laser additive manufacturing, Int. J. Miner., Metall. Mater., 28(2021), No. 3, p. 462. doi: 10.1007/s12613-020-2133-x
      [6]
      N. Li, S. Huang, G.D. Zhang, R.Y. Qin, et al., Progress in additive manufacturing on new materials: A review, J. Mater. Sci. Technol., 35(2019), No. 2, p. 242. doi: 10.1016/j.jmst.2018.09.002
      [7]
      K. Gruber, W. Stopyra, K. Kobiela, B. Madejski, M. Malicki, and T. Kurzynowski, Mechanical properties of Inconel 718 additively manufactured by laser powder bed fusion after industrial high-temperature heat treatment, J. Manuf. Process., 73(2022), p. 642. doi: 10.1016/j.jmapro.2021.11.053
      [8]
      M. Zhang, B. Zhang, Y. Wen and X. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner., Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
      [9]
      F.Y. Lu, H.Y. Wan, X. Ren, L.M. Huang, H.L. Liu, and X. Yi, Mechanical and microstructural characterization of additive manufactured Inconel 718 alloy by selective laser melting and laser metal deposition, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1322. doi: 10.1007/s42243-022-00755-x
      [10]
      A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, Evolution of grain structure during laser additive manufacturing. Simulation by a cellular automata method, Mater. Des., 106(2016), p. 321. doi: 10.1016/j.matdes.2016.05.125
      [11]
      S.Y. Liu, H.Q. Li, C.X. Qin, R. Zong, and X.Y. Fang, The effect of energy density on texture and mechanical anisotropy in selective laser melted Inconel 718, Mater. Des., 191(2020), art. No. 108642. doi: 10.1016/j.matdes.2020.108642
      [12]
      J.Y. Shao, G. Yu, X.L. He, S.X. Li, R. Chen, and Y. Zhao, Grain size evolution under different cooling rate in laser additive manufacturing of superalloy, Opt. Laser Technol., 119(2019), art. No. 105662. doi: 10.1016/j.optlastec.2019.105662
      [13]
      H.Y. Wan, Z.J. Zhou, C.P. Li, G.F. Chen, and G.P. Zhang, Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting, J. Mater. Sci. Technol., 34(2018), No. 10, p. 1799. doi: 10.1016/j.jmst.2018.02.002
      [14]
      O. Gokcekaya, T. Ishimoto, S. Hibino, J. Yasutomi, T. Narushima, and T. Nakano, Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy, Acta Mater., 212(2021), art. No. 116876. doi: 10.1016/j.actamat.2021.116876
      [15]
      B. Stegman, A.Y. Shang, L. Hoppenrath, et al., Volumetric energy density impact on mechanical properties of additively manufactured 718 Ni alloy, Mater. Sci. Eng. A, 854(2022), art. No. 143699. doi: 10.1016/j.msea.2022.143699
      [16]
      Y.C. Wang, J. Shi, and Y. Liu, Competitive grain growth and dendrite morphology evolution in selective laser melting of Inconel 718 superalloy, J. Cryst. Growth, 521(2019), p. 15. doi: 10.1016/j.jcrysgro.2019.05.027
      [17]
      R. Acharya, J.A. Sharon, and A. Staroselsky, Prediction of microstructure in laser powder bed fusion process, Acta Mater., 124(2017), p. 360. doi: 10.1016/j.actamat.2016.11.018
      [18]
      M. Yang, L. Wang, and W.T. Yan, Phase-field modeling of grain evolution in additive manufacturing with addition of reinforcing particles, Addit. Manuf., 47(2021), art. No. 102286.
      [19]
      W.J. Xiao, S.M. Li, C.S. Wang, et al., Multi-scale simulation of dendrite growth for direct energy deposition of nickel-based superalloys, Mater. Des., 164(2019), art. No. 107553. doi: 10.1016/j.matdes.2018.107553
      [20]
      C. Kumara, A. Segerstark, F.B. Hanning, et al., Microstructure modelling of laser metal powder directed energy deposition of alloy 718, Addit. Manuf., 25(2019), p. 357.
      [21]
      C. Kumara, A.R. Balachandramurthi, S. Goel, F.B. Hanning, and J. Moverare, Toward a better understanding of phase transformations in additive manufacturing of Alloy 718, Materialia, 13(2020), art. No. 100862. doi: 10.1016/j.mtla.2020.100862
      [22]
      J.P.M. Cheloni, E.B. Fonseca, A.H.G. Gabriel, and É.S.N. Lopes, The transient temperature field and microstructural evolution of additively manufactured AISI H13 steel supported by finite element analysis, J. Mater. Res. Technol., 19(2022), p. 4583. doi: 10.1016/j.jmrt.2022.06.143
      [23]
      J. Goldak, A. Chakravarti, and M. Bibby, A new finite element model for welding heat sources, Metall. Trans. B, 15(1984), No. 2, p. 299. doi: 10.1007/BF02667333
      [24]
      Y.H. Cheng, Numerical Simulation and Experimental Research of Selective Laser Melting on Nickel Based Alloy Powder GH4169 [Dissertation], North University of China, Taiyuan, 2016.
      [25]
      I. Steinbach, F. Pezzolla, B. Nestler, et al., A phase field concept for multiphase systems, Phys. D, 94(1996), No. 3, p. 135. doi: 10.1016/0167-2789(95)00298-7
      [26]
      J. Eiken, B. Böttger, and I. Steinbach, Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application, Phys. Rev. E, 73(2006), No. 6Pt2, art. No. 066122.
      [27]
      I. Steinbach, Phase-field models in materials science, Modell. Simul. Mater. Sci. Eng., 17(2009), No. 7, art. No. 073001. doi: 10.1088/0965-0393/17/7/073001
      [28]
      Q. Peng, Study on Microstructure and Properties of Nickel-based Superalloy by Selective Laser Melting [Dissertation], University of Science and Technology Beijing, Beijing, 2020.
      [29]
      M. Zheng, L. Wei, J. Chen, et al., On the role of energy input in the surface morphology and microstructure during selective laser melting of Inconel 718 alloy, J. Mater. Res. Technol., 11(2021), p. 392. doi: 10.1016/j.jmrt.2021.01.024
      [30]
      M. Balbaa, S. Mekhiel, M. Elbestawi, and J. McIsaac, On selective laser melting of Inconel 718: Densification, surface roughness, and residual stresses, Mater. Des., 193(2020), art. No. 108818. doi: 10.1016/j.matdes.2020.108818
      [31]
      W.Q. Wang, S.Y. Wang, X.G. Zhang, F. Chen, Y.X. Xu, and Y.T. Tian, Process parameter optimization for selective laser melting of Inconel 718 superalloy and the effects of subsequent heat treatment on the microstructural evolution and mechanical properties, J. Manuf. Process., 64(2021), p. 530. doi: 10.1016/j.jmapro.2021.02.004
      [32]
      H.Y. Wang, L. Wang, R. Cui, B.B. Wang, L.S. Luo, and Y.Q. Su, Differences in microstructure and nano-hardness of selective laser melted Inconel 718 single tracks under various melting modes of molten pool, J. Mater. Res. Technol., 9(2020), No. 5, p. 10401. doi: 10.1016/j.jmrt.2020.07.029

    Catalog


    • /

      返回文章
      返回