Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries

Jiabing Miao, Yingxiao Du, Ruotong Li, Zekun Zhang, Ningning Zhao, Lei Dai, Ling Wang, Zhangxing He

图(11)

分享

计量
  • 文章访问数:  1681
  • HTML全文浏览量:  505
  • PDF下载量:  115
  • 被引次数: 0

目录

Cite this article as:

Jiabing Miao, Yingxiao Du, Ruotong Li, Zekun Zhang, Ningning Zhao, Lei Dai, Ling Wang, and Zhangxing He, Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp.33-47. https://dx.doi.org/10.1007/s12613-023-2665-y
Jiabing Miao, Yingxiao Du, Ruotong Li, Zekun Zhang, Ningning Zhao, Lei Dai, Ling Wang, and Zhangxing He, Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp.33-47. https://dx.doi.org/10.1007/s12613-023-2665-y
引用本文 PDF XML SpringerLink
特约综述

锌离子电池无锌金属负极的最新进展和展望

文章亮点

(1) 根据阳极材料的组成,阐述不同的无锌金属阳极及其优势。 (2) 系统总结了无锌金属阳极在锌离子电池中的最新进展。 (3) 基于无锌金属阳极在锌离子电池中的巨大潜力,进一步展望了无锌金属阳极的发展前景。

锌离子电池具有成本低、能量密度高和环境友好的优点,被公认为是潜在的储能设备。但是锌负极在电池充放电过程中会出现不可避免的锌枝晶、钝化、腐蚀和氢气析出反应等问题,这成为锌离子电池实际应用的障碍。合适的无锌金属负极提供了比金属锌负极更高的工作电位,可以有效解决金属锌负极工作过程中的锌枝晶、析氢和副反应问题。电池的安全性和循环寿命的提高为锌离子电池的商业化提供了进一步的进展。在此基础上,文章系统地介绍了无锌金属负极作为“摇椅”锌离子电池锌负极的研究进展。无锌金属负极主要依据四个类别进行了讨论:过渡金属氧化物、过渡金属硫化物、MXene复合材料和有机化合物的特性和储锌机制。最后,对无锌金属负极的发展提出了进一步的展望。希望文章将为商业可充电锌离子电池的进一步发展提供参考。

 

Invited Review

Recent advances and perspectives of zinc metal-free anodes for zinc ion batteries

Author Affilications
    Corresponding author:

    Zekun Zhang      E-mail: zhangzekun1020@163.com

    Lei Dai      E-mail: dailei_b@163.com

    Zhangxing He     E-mail: zxhe@ncst.edu.cn

  • Received: 10 January 2023; Revised: 21 March 2023; Accepted: 24 April 2023; Available online: 25 April 2023

Zinc-ion batteries (ZIBs) are recognized as potential energy storage devices due to their advantages of low cost, high energy density, and environmental friendliness. However, zinc anodes are subject to unavoidable zinc dendrites, passivation, corrosion, and hydrogen evolution reactions during the charging and discharging of batteries, becoming obstacles to the practical application of ZIBs. Appropriate zinc metal-free anodes provide a higher working potential than metallic zinc anodes, effectively solving the problems of zinc dendrites, hydrogen evolution, and side reactions during the operation of metallic zinc anodes. The improvement in the safety and cycle life of batteries creates conditions for further commercialization of ZIBs. Therefore, this work systematically introduces the research progress of zinc metal-free anodes in “rocking chair” ZIBs. Zinc metal-free anodes are mainly discussed in four categories: transition metal oxides, transition metal sulfides, MXene (two dimensional transition metal carbide) composites, and organic compounds, with discussions on their properties and zinc storage mechanisms. Finally, the outlook for the development of zinc metal-free anodes is proposed. This paper is expected to provide a reference for the further promotion of commercial rechargeable ZIBs.

 

  • This work was financially supported by the National Natural Science Foundation of China (Nos. 51872090 and 51772097), the Hebei Natural Science Fund for Distinguished Young Scholar, China (No. E2019209433), the Youth Talent Program of Hebei Provincial Education Department, China (No. BJ2018020), the Natural Science Foundation of Hebei Province, China (No. E2020209151), and the Science and Technology Project of Hebei Education Department, China (No. SLRC2019028).

  • [1]

    B. Dunn, H. Kamath, and J.M. Tarascon, Electrical energy storage for the grid: A battery of choices, Science, 334(2011), No. 6058, p. 928. DOI: 10.1126/science.1212741

    [2]

    M. Winter and R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 104(2004), No. 10, p. 4245. DOI: 10.1021/cr020730k

    [3]

    D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7(2015), No. 1, p. 19. DOI: 10.1038/nchem.2085

    [4]

    J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22(2010), No. 3, p. 587. DOI: 10.1021/cm901452z

    [5]

    J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414(2001), No. 6861, p. 359. DOI: 10.1038/35104644

    [6]

    X. Guo, J. Zhou, C.L. Bai, X.K. Li, G.Z. Fang, and S.Q. Liang, Zn/MnO2 battery chemistry with dissolution-deposition mechanism, Mater. Today Energy, 16(2020), art. No. 100396. DOI: 10.1016/j.mtener.2020.100396

    [7]

    R.Y. Wen, Z.H. Gao, L. Luo, et al., Sandwich-structured electrospun all-fluoropolymer membranes with thermal shut-down function and enhanced electrochemical performance, Nanocomposites, 8(2022), No. 1, p. 64. DOI: 10.1080/20550324.2022.2057661

    [8]

    D.L. Chao, W.H. Zhou, C. Ye, et al., An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58(2019), No. 23, p. 7823. DOI: 10.1002/anie.201904174

    [9]

    F. Wang, O. Borodin, T. Gao, et al., Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17(2018), No. 6, p. 543. DOI: 10.1038/s41563-018-0063-z

    [10]

    Y. Song, P.C. Ruan, C.W. Mao, et al., Metal-organic frameworks functionalized separators for robust aqueous zinc-ion batteries, Nano Micro Lett., 14(2022), No. 1, p. 1. DOI: 10.1007/s40820-021-00751-y

    [11]

    H.G. Qin, L.L. Chen, L.M. Wang, X. Chen, and Z.H. Yang, V2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries, Electrochim. Acta, 306(2019), p. 307. DOI: 10.1016/j.electacta.2019.03.087

    [12]

    M.Y. Yan, P. He, Y. Chen, et al., Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries, Adv. Mater., 30(2018), No. 1, art. No. 1703725. DOI: 10.1002/adma.201703725

    [13]

    N. Zhang, X.Y. Chen, M. Yu, Z.Q. Niu, F.Y. Cheng, and J. Chen, Materials chemistry for rechargeable zinc-ion batteries, Chem. Soc. Rev., 49(2020), No. 13, p. 4203. DOI: 10.1039/C9CS00349E

    [14]

    K.Y. Zhu, T. Wu, and K. Huang, NaCa0.6V6O16·3H2O as an ultra-stable cathode for Zn-ion batteries: The roles of pre-inserted dual-cations and structural water in V3O8 layer, Adv. Energy Mater., 9(2019), No. 38, art. No. 1901968. DOI: 10.1002/aenm.201901968

    [15]

    L. Cheng, J.W. Chen, Y. Yan, et al., Metal organic frameworks derived active functional groups decorated manganese monoxide for aqueous zinc ion battery, Chem. Phys. Lett., 778(2021), art. No. 138772. DOI: 10.1016/j.cplett.2021.138772

    [16]

    S.Y. Li, D.X. Yu, L.N. Liu, et al., In-situ electrochemical induced artificial solid electrolyte interphase for MnO@C nanocomposite enabling long-lived aqueous zinc-ion batteries, Chem. Eng. J., 430(2022), art. No. 132673. DOI: 10.1016/j.cej.2021.132673

    [17]

    W.J. Li, X. Gao, Z.Y. Chen, et al., Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery, Chem. Eng. J., 402(2020), art. No. 125509. DOI: 10.1016/j.cej.2020.125509

    [18]

    T.S. Zhang, Y. Tang, G.Z. Fang, et al., Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte, Adv. Funct. Mater., 30(2020), No. 30, art. No. 2002711. DOI: 10.1002/adfm.202002711

    [19]

    X.H. Chen, P.C. Ruan, X.W. Wu, S.Q. Liang, and J.A. Zhou, Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries, Acta Phys. Chim. Sin., 38(2022), No. 12, art. No. 2111003.

    [20]

    D. Selvakumaran, A.Q. Pan, S.Q. Liang, and G.Z. Cao, A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries, J. Mater. Chem. A, 7(2019), No. 31, p. 18209. DOI: 10.1039/C9TA05053A

    [21]

    G. Zampardi and F. La Mantia, Prussian blue analogues as aqueous Zn-ion batteries electrodes: Current challenges and future perspectives, Curr. Opin. Electrochem., 21(2020), p. 84. DOI: 10.1016/j.coelec.2020.01.014

    [22]

    Y.X. Zeng, X.F. Lu, S.L. Zhang, D.Y. Luan, S. Li, and X.W. Lou, Construction of Co–Mn Prussian blue analog hollow spheres for efficient aqueous Zn-ion batteries, Angew. Chem. Int. Ed., 60(2021), No. 41, p. 22189. DOI: 10.1002/anie.202107697

    [23]

    L.N. Chen, Q.Y. An, and L.Q. Mai, Recent advances and prospects of cathode materials for rechargeable aqueous zinc-ion batteries, Adv. Mater. Interfaces, 6(2019), No. 17, art. No. 1900387. DOI: 10.1002/admi.201900387

    [24]

    Y.F. Geng, L. Pan, Z.Y. Peng, et al., Electrolyte additive engineering for aqueous Zn ion batteries, Energy Storage Mater., 51(2022), p. 733. DOI: 10.1016/j.ensm.2022.07.017

    [25]

    B. Li, X.T. Zhang, T.T. Wang, et al., Interfacial engineering strategy for high-performance Zn metal anodes, Nano Micro Lett., 14(2021), No. 1, p. 1.

    [26]

    T.T. Wang, C.P. Li, X.S. Xie, et al., Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives, ACS Nano, 14(2020), No. 12, p. 16321. DOI: 10.1021/acsnano.0c07041

    [27]

    Q. Zhang, J.Y. Luan, Y.G. Tang, X.B. Ji, and H.Y. Wang, Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries, Angew. Chem. Int. Ed., 59(2020), No. 32, p. 13180. DOI: 10.1002/anie.202000162

    [28]

    H.M. Yu, Y.J. Chen, H. Wang, et al., Engineering multi-functionalized molecular skeleton layer for dendrite-free and durable zinc batteries, Nano Energy, 99(2022), art. No. 107426. DOI: 10.1016/j.nanoen.2022.107426

    [29]

    L. Hong, X.M. Wu, L.Y. Wang, et al., Highly reversible zinc anode enabled by a cation-exchange coating with Zn-ion selective channels, ACS Nano, 16(2022), No. 4, p. 6906. DOI: 10.1021/acsnano.2c02370

    [30]

    W.C. Du, E.H. Ang, Y. Yang, Y.F. Zhang, M.H. Ye, and C.C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries, Energy Environ. Sci., 13(2020), No. 10, p. 3330. DOI: 10.1039/D0EE02079F

    [31]

    N. Guo, W.J. Huo, X.Y. Dong, et al., A review on 3D zinc anodes for zinc ion batteries, Small Methods, 6(2022), No. 9, art. No. e2200597. DOI: 10.1002/smtd.202200597

    [32]

    R.T. Li, Y.X. Du, Y.H. Li, et al., Alloying strategy for high-performance zinc metal anodes, ACS Energy Lett., 8(2023), No. 1, p. 457. DOI: 10.1021/acsenergylett.2c01960

    [33]

    B.T. Liu, S.J. Wang, Z.L. Wang, H. Lei, Z.T. Chen, and W.J. Mai, Novel 3D nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries, Small, 16(2020), No. 22, art. No. e2001323. DOI: 10.1002/smll.202001323

    [34]

    C. Liu, Z. Luo, W.T. Deng, et al., Liquid alloy interlayer for aqueous zinc-ion battery, ACS Energy Lett., 6(2021), No. 2, p. 675. DOI: 10.1021/acsenergylett.0c02569

    [35]

    Q. Zhang, J.Y. Luan, L. Fu, et al., The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed., 58(2019), No. 44, p. 15841. DOI: 10.1002/anie.201907830

    [36]

    Y.M. Zhang, J.D. Howe, S. Ben-Yoseph, Y.T. Wu, and N. Liu, Unveiling the origin of alloy-seeded and nondendritic growth of Zn for rechargeable aqueous Zn batteries, ACS Energy Lett., 6(2021), No. 2, p. 404. DOI: 10.1021/acsenergylett.0c02343

    [37]

    P. Sun, L. Ma, W.H. Zhou, et al., Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive, Angew. Chem. Int. Ed., 60(2021), No. 33, p. 18247. DOI: 10.1002/anie.202105756

    [38]

    H.J. Ji, Z.Q. Han, Y.H. Lin, et al., Stabilizing zinc anode for high-performance aqueous zinc ion batteries via employing a novel inositol additive, J. Alloys Compd., 914(2022), art. No. 165231. DOI: 10.1016/j.jallcom.2022.165231

    [39]

    C.P. Li, X.S. Xie, H. Liu, et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries, Natl. Sci. Rev., 9(2021), No. 3, art. No. nwab177.

    [40]

    Z.Y. Xing, S. Wang, A.P. Yu, and Z.W. Chen, Aqueous intercalation-type electrode materials for grid-level energy storage: Beyond the limits of lithium and sodium, Nano Energy, 50(2018), p. 229. DOI: 10.1016/j.nanoen.2018.05.049

    [41]

    W. Kaveevivitchai and A. Manthiram, High-capacity zinc-ion storage in an open-tunnel oxide for aqueous and nonaqueous Zn-ion batteries, J. Mater. Chem. A, 4(2016), No. 48, p. 18737. DOI: 10.1039/C6TA07747A

    [42]

    M.S. Chae, J.W. Heo, S.C. Lim, and S.T. Hong, Electrochemical zinc-ion intercalation properties and crystal structures of ZnMo6S8 and Zn2Mo6S8 chevrel phases in aqueous electrolytes, Inorg. Chem., 55(2016), No. 7, p. 3294. DOI: 10.1021/acs.inorgchem.5b02362

    [43]

    W. Li, K.L. Wang, S.J. Cheng, and K. Jiang, An ultrastable presodiated titanium disulfide anode for aqueous “rocking-chair” zinc ion battery, Adv. Energy Mater., 9(2019), No. 27, art. No. 1900993. DOI: 10.1002/aenm.201900993

    [44]

    L.J. Yan, X.M. Zeng, Z.H. Li, et al., An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage, Mater. Today Energy, 13(2019), p. 323. DOI: 10.1016/j.mtener.2019.06.011

    [45]

    Y. Yang, J.F. Xiao, J.Y. Cai, et al., Mixed-valence copper selenide as an anode for ultralong lifespan rocking-chair Zn-ion batteries: An insight into its intercalation/extraction kinetics and charge storage mechanism, Adv. Funct. Mater., 31(2021), No. 3, art. No. 2005092. DOI: 10.1002/adfm.202005092

    [46]

    W. Li, Y.S. Ma, P. Li, X.Y. Jing, K. Jiang, and D.H. Wang, Electrochemically activated Cu2–xTe as an ultraflat discharge plateau, low reaction potential, and stable anode material for aqueous Zn-ion half and full batteries, Adv. Energy Mater., 11(2021), No. 42, art. No. 2102607. DOI: 10.1002/aenm.202102607

    [47]

    J. Cao, D.D. Zhang, Y.L. Yue, et al., Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries, Chem. Eng. J., 426(2021), art. No. 131893. DOI: 10.1016/j.cej.2021.131893

    [48]

    B. Wang, J.P. Yan, Y.F. Zhang, M.H. Ye, Y. Yang, and C.C. Li, In situ carbon insertion in laminated molybdenum dioxide by interlayer engineering toward ultrastable “rocking-chair” zinc-ion batteries, Adv. Funct. Mater., 31(2021), No. 30, art. No. 2102827. DOI: 10.1002/adfm.202102827

    [49]

    Q. Zhang, T.F. Duan, M.J. Xiao, et al., BiOI nanopaper As a high-capacity, long-life and insertion-type anode for a flexible quasi-solid-state Zn-ion battery, ACS Appl. Mater. Interfaces, 14(2022), No. 22, p. 25516. DOI: 10.1021/acsami.2c04946

    [50]

    X. Wang, Y.M. Wang, Y.P. Jiang, et al., Tailoring ultrahigh energy density and stable dendrite-free flexible anode with Ti3C2Tx MXene nanosheets and hydrated ammonium vanadate nanobelts for aqueous rocking-chair zinc ion batteries, Adv. Funct. Mater., 31(2021), No. 35, art. No. 2103210. DOI: 10.1002/adfm.202103210

    [51]

    T. Xiong, Y.X. Zhang, Y.M. Wang, W.S.V. Lee, and J.M. Xue, Hexagonal MoO3 as a zinc intercalation anode towards zinc metal-free zinc-ion batteries, J. Mater. Chem. A, 8(2020), No. 18, p. 9006. DOI: 10.1039/D0TA02236E

    [52]

    Y.P. Zhu, Y. Cui, and H.N. Alshareef, An anode-free Zn–MnO2 battery, Nano Lett., 21(2021), No. 3, p. 1446. DOI: 10.1021/acs.nanolett.0c04519

    [53]

    Y.Q. Jiang, K. Ma, M.L. Sun, Y.Y. Li, and J.P. Liu, All-climate stretchable dendrite-free Zn-ion hybrid supercapacitors enabled by hydrogel electrolyte engineering, Energy Environ. Mater., 6(2023), No. 2, art. No. e12357. DOI: 10.1002/eem2.12357

    [54]

    K. Mao, J.J. Shi, Q.X. Zhang, Y et al., High-capacitance MXene anode based on Zn-ion pre-intercalation strategy for degradable micro Zn-ion hybrid supercapacitors, Nano Energy, 103(2022), art. No. 107791. DOI: 10.1016/j.nanoen.2022.107791

    [55]

    J.N. Hao, X.L. Li, X.H. Zeng, D. Li, J.F. Mao, and Z.P. Guo, Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries, Energy Environ. Sci., 13(2020), No. 11, p. 3917. DOI: 10.1039/D0EE02162H

    [56]

    H. Jia, Z.Q. Wang, B. Tawiah, et al., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523. DOI: 10.1016/j.nanoen.2020.104523

    [57]

    W.J. Lu, C.X. Xie, H.M. Zhang, and X.F. Li, Inhibition of zinc dendrite growth in zinc-based batteries, ChemSusChem, 11(2018), No. 23, p. 3996. DOI: 10.1002/cssc.201801657

    [58]

    C.P. Li, X.S. Xie, S.Q. Liang, and J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries, Energy Environ. Mater., 3(2020), No. 2, p. 146. DOI: 10.1002/eem2.12067

    [59]

    Z.Y. Xing, Y.Y. Sun, X.S. Xie, et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes, Angew. Chem. Int. Ed., 62(2023), No. 5, art. No. e202215324. DOI: 10.1002/anie.202215324

    [60]

    X.F. Chen, R.S. Huang, M.Y. Ding, H.B. He, F. Wang, and S.B. Yin, Hexagonal WO3/3D porous graphene as a novel zinc intercalation anode for aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 3, p. 3961. DOI: 10.1021/acsami.1c18975

    [61]

    B.B. Yang, T. Qin, Y.Y. Du, et al., Rocking-chair proton battery based on a low-cost “water in salt” electrolyte, Chem. Commun., 58(2022), No. 10, p. 1550. DOI: 10.1039/D1CC06325A

    [62]

    Y.W. Cheng, L.L. Luo, L. Zhong, et al., Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries, ACS Appl. Mater. Interfaces, 8(2016), No. 22, p. 13673. DOI: 10.1021/acsami.6b03197

    [63]

    M.S. Chae and S.T. Hong, Prototype system of rocking-chair Zn-ion battery adopting zinc chevrel phase anode and rhombohedral zinc hexacyanoferrate cathode, Batteries, 5(2019), No. 1, art. No. 3. DOI: 10.3390/batteries5010003

    [64]

    Z. Lv, B. Wang, M. Ye, Y. Zhang, Y. Yang, and C.C. Li, Activating the stepwise intercalation–conversion reaction of layered copper sulfide toward extremely high capacity zinc-metal-free anodes for rocking-chair zinc-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 1, p. 1126. DOI: 10.1021/acsami.1c21168

    [65]

    L. Wen, Y.N. Wu, S.L. Wang, et al., A novel TiSe2 (de)intercalation type anode for aqueous zinc-based energy storage, Nano Energy, 93(2022), art. No. 106896. DOI: 10.1016/j.nanoen.2021.106896

    [66]

    Y.Q. Du, B.Y. Zhang, R.K. Kang, et al., Practical conversion-type titanium telluride anodes for high-capacity long-lifespan rechargeable aqueous zinc batteries, J. Mater. Chem. A, 10(2022), No. 32, p. 16976. DOI: 10.1039/D2TA04912K

    [67]

    B.T. Zhao, S.L. Wang, Q.T. Yu, et al., A flexible, heat-resistant and self-healable “rocking-chair” zinc ion microbattery based on MXene-TiS2 (de)intercalation anode, J. Power Sources, 504(2021), art. No. 230076. DOI: 10.1016/j.jpowsour.2021.230076

    [68]

    N.N. Liu, X. Wu, Y. Zhang, et al., Building high rate capability and ultrastable dendrite-free organic anode for rechargeable aqueous zinc batteries, Adv. Sci., 7(2020), No. 14, art. No. 2000146. DOI: 10.1002/advs.202000146

    [69]

    Y. Liu, X.M. Zhou, X. Wang, et al., Hydrated titanic acid as an ultralow-potential anode for aqueous zinc-ion full batteries, Chem. Eng. J., 420(2021), art. No. 129629. DOI: 10.1016/j.cej.2021.129629

    [70]

    S.L. Leng, X.Y. Sun, Y.C. Yang, and R.H. Zhang, Borophene as an anode material for Zn-ion batteries: A first-principles investigation, Mater. Res. Express, 6(2019), No. 8, art. No. 085504. DOI: 10.1088/2053-1591/ab1a88

Relative Articles

Int. J. Miner. Metall. Mater., 2025, 32(2): 270-291.

PDF View details

张迪, 吕鹏飞, 秦巍, 何欣, 贺元骅. 构建稳定锂金属负极氟化SEI的研究进展 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-024-2996-3

View details

陈硕, 苏胜鹏, 黄艳芳, 刘兵兵, 孙虎, 杨淑珍, 韩桂洪. 深共晶溶剂在关键金属冶金中的分离纯化应用:最新进展和前景 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-024-2923-7

View details

Int. J. Miner. Metall. Mater., 2024, 31(11): 2345-2367.

PDF View details

Boyang Fu, Maciej Moździerz, Andrzej Kulka, Konrad Świerczek. 富镍层状氧化物及锂离子电池正极材料研究进展 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-024-2948-y

View details

Int. J. Miner. Metall. Mater., 2024, 31(7): 1752-1765.

PDF View details

武爱多, 王天浩, 张隆, 陈晨, 李侨敏, 曲选辉, 刘永畅. 水系锌离子电池MXene基正极材料的研究进展和展望 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-024-2859-y

View details

Int. J. Miner. Metall. Mater., 2023, 30(11): 2112-2133.

PDF View details

赵莉, 王金科, 陈凯, 杨景智, 郭鑫, 钱鸿昌, 马菱薇, 张达威. 功能化碳点在腐蚀防护中的研究进展与展望 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-023-2675-9

View details

Int. J. Miner. Metall. Mater., 2023, 30(8): 1455-1473.

PDF View details

薛改利, Erol Yilmaz, 王永定. 中国金属矿山充填采矿的研究进展和未来展望 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-023-2663-0

View details

Int. J. Miner. Metall. Mater., 2022, 29(5): 1037-1052.

PDF View details

郭轲, 王伟, 焦树强. 钾离子电池层状负极材料的最新进展与展望 [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-022-2470-z

View details

Yun-long He, Rui-dong Xu, Shi-wei He, Han-sen Chen, Kuo Li, Yun Zhu, Qing-feng Shen. Alkaline pressure oxidative leaching of bismuth-rich and arsenic-rich lead anode slime [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-019-1776-y

View details

Xiao-cong Zhong, Xiao-ying Yu, Zheng-wei Liu, Liang-xing Jiang, Jie Li, Ye-xiang Liu. Comparison of corrosion and oxygen evolution behaviors between cast and rolled Pb–Ag–Nd anodes [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-015-1169-9

View details

Hai-tao Yang, Huan-rong Liu, Yong-chun Zhang, Bu-ming Chen, Zhong-cheng Guo, Rui-dong Xu. Properties of a new type Al/Pb-0.3%Ag alloy composite anode for zinc electrowinning [J]. 矿物冶金与材料学报(英文版). DOI: 10.1007/s12613-013-0825-1

View details

/

返回文章
返回