留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(5)

数据统计

分享

计量
  • 文章访问数:  1047
  • HTML全文浏览量:  347
  • PDF下载量:  92
  • 被引次数: 0
Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li,  and Hailei Zhao, Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1859-1867. https://doi.org/10.1007/s12613-023-2666-x
Cite this article as:
Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li,  and Hailei Zhao, Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1859-1867. https://doi.org/10.1007/s12613-023-2666-x
引用本文 PDF XML SpringerLink
研究论文

晶格铌掺杂实现高性能钠离子电池Na3V2(PO4)2O2F正极材料



    * 共同第一作者
  • 通讯作者:

    赵海雷    E-mail: hlzhao@ustb.edu.cn

文章亮点

  • (1) 晶格V位Nb掺杂可提高Na3V2(PO4)2O2F材料的本征电子电导率和晶格Na+迁移速率。
  • (2) 石墨烯片构建了电极内部活性颗粒间快速的电子传导网络。
  • (3) Na3V1.95Nb0.05(PO4)2O2F/石墨烯复合正极材料表现出优异的倍率性能和长循环稳定性。
  • 聚阴离子型正极材料Na3V2(PO4)2O2F因其较高的工作电压以及良好的结构稳定性和热稳定性受到了研究者的广泛关注。然而,其本征电子电导率低下的缺点直接造成电极反应动力学缓慢,制约其电化学性能发挥,进而限制其实用化发展。本文旨在开发出一种倍率性能优异的Na3V2(PO4)2O2F正极材料,通过溶剂热法结合后续热处理制备了不同Nb掺杂量的Na3V2−xNbx(PO4)2O2F/石墨烯复合正极材料(x = 0, 0.05, 0.1)。研究结果表明,相较于未掺杂样品(Na3V2(PO4)2O2F/石墨烯),晶格V位高价Nb5+元素掺杂(Na3V1.95Nb0.05(PO4)2O2F/石墨烯)能够产生V4+/V3+混合电价,降低了结构中电子跃迁禁带宽度,从而提高了材料的本征电子电导率。同时,扩展的晶格空间有利于结构中Na+迁移。此外,所制备的复合正极材料表现出活性颗粒紧密附着于石墨烯片层上的结构特点,电极内部所建立的高速电子导电网络进一步加速了电极反应动力学。因此,所制备的Na3V1.95Nb0.05(PO4)2O2F/石墨烯正极材料表现出优异的倍率性能和良好的长循环稳定性:10C电流密度下的循环可逆比容量可达~72 mAh·g−1(相较于0.5C电流密度下的容量保持率为65.2%);5C电流密度下500次循环,电极容量衰减率为~0.099%每循环。
  • Research Article

    Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping

    + Author Affiliations
    • Na3V2(PO4)2O2F (NVPOF) has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability. However, the sluggish electrode reaction resulting from its low intrinsic electronic conductivity significantly restricts its electrochemical performance and thus its practical application. Herein, Nb-doped Na3V2−xNbx(PO4)2O2F/graphene (rGO) composites (x = 0, 0.05, 0.1) were prepared using a solvothermal method followed by calcination. Compared to the un-doped NVPOF/rGO, doping V-site with high-valence Nb element (Nb5+) (Na3V1.95Nb0.05(PO4)2O2F/rGO (NVN05POF/rGO)) can result in the generated V4+/V3+ mixed-valence, ensuring the lower bandgap and thus the increased intrinsic electronic conductivity. Besides, the expanded lattice space favors the Na+ migration. With the structure feature where NVN05POF particles are attached to the rGO sheets, the electrode reaction kinetics is further accelerated owing to the well-constructed electron conductive network. As a consequence, the as-prepared NVN05POF/rGO sample exhibits a high specific capacity of ~72 mAh·g−1 at 10C (capacity retention of 65.2% (vs. 0.5C)) and excellent long-term cycling stability with the capacity fading rate of ~0.099% per cycle in 500 cycles at 5C.
    • loading
    • Supplementary Information-10.1007s12613-023-2666-x.docx
    • [1]
      M. Armand and J.M. Tarascon, Building better batteries, Nature, 451(2008), No. 7179, p. 652. doi: 10.1038/451652a
      [2]
      J.B. Goodenough and K.S. Park, The Li-ion rechargeable battery: A perspective, J. Am. Chem. Soc., 135(2013), No. 4, p. 1167. doi: 10.1021/ja3091438
      [3]
      Y.C. Liu, X.B. Liu, T.S. Wang, L.Z. Fan, and L.F. Jiao, Research and application progress on key materials for sodium-ion batteries, Sustainable Energy Fuels, 1(2017), No. 5, p. 986. doi: 10.1039/C7SE00120G
      [4]
      Q. Jiang, W.Q. Zhang, J.C. Zhao, P.H. Rao, and J.F. Mao, Superior sodium and lithium storage in strongly coupled amorphous Sb2S3 spheres and carbon nanotubes, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1194. doi: 10.1007/s12613-021-2259-5
      [5]
      C. Vaalma, D. Buchholz, M. Weil, and S. Passerini, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3(2018), art. No. 18013. doi: 10.1038/natrevmats.2018.13
      [6]
      P.K. Nayak, L.T. Yang, W. Brehm, and P. Adelhelm, From lithium-ion to sodium-ion batteries: Advantages, challenges, and surprises, Angew. Chem. Int. Ed., 57(2018), No. 1, p. 102. doi: 10.1002/anie.201703772
      [7]
      J.R. He, A. Bhargav, W. Shin, and A. Manthiram, Stable dendrite-free sodium-sulfur batteries enabled by a localized high-concentration electrolyte, J. Am. Chem. Soc., 143(2021), No. 48, p. 20241. doi: 10.1021/jacs.1c08851
      [8]
      X.H. Ma, H.L. Chen, and G. Ceder, Electrochemical properties of monoclinic NaMnO2, J. Electrochem. Soc., 158(2011), No. 12, art. No. A1307. doi: 10.1149/2.035112jes
      [9]
      J. Zhao, L.W. Zhao, N. Dimov, S. Okada, and T. Nishida, Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries, J. Electrochem. Soc., 160(2013), No. 5, p. A3077. doi: 10.1149/2.007305jes
      [10]
      S. Komaba, C. Takei, T. Nakayama, A. Ogata, and N. Yabuuchi, Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2, Electrochem. Commun., 12(2010), No. 3, p. 355. doi: 10.1016/j.elecom.2009.12.033
      [11]
      J.S. Chen, L. Wei, A. Mahmood, et al., Prussian blue, its analogues and their derived materials for electrochemical energy storage and conversion, Energy Storage Mater., 25(2020), p. 585. doi: 10.1016/j.ensm.2019.09.024
      [12]
      Y.C. Liu, N. Zhang, F.F. Wang, X.B. Liu, L.F. Jiao, and L.Z. Fan, Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries, Adv. Funct. Mater., 28(2018), No. 30, art. No. 1801917. doi: 10.1002/adfm.201801917
      [13]
      L.N. Zhao, H.L. Zhao, X.Y. Long, Z.L. Li, and Z.H. Du, Superior high-rate and ultralong-lifespan Na3V2(PO4)3@C cathode by enhancing the conductivity both in bulk and on surface, ACS Appl. Mater. Interfaces, 10(2018), No. 42, p. 35963. doi: 10.1021/acsami.8b12055
      [14]
      J.F. Yang, D.D. Li, X.S. Wang, X.X. Zhang, J. Xu, and J.T. Chen, Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode, Energy Storage Mater., 24(2020), p. 694. doi: 10.1016/j.ensm.2019.07.002
      [15]
      Y.R. Qi, L.Q. Mu, J.M. Zhao, Y.S. Hu, H.Z. Liu, and S. Dai, Superior Na-storage performance of low-temperature-synthesized Na3(VO1−xPO4)2F1+2x (0≤x≤1) nanoparticles for Na-ion batteries, Angew. Chem. Int. Ed., 54(2015), No. 34, p. 9911. doi: 10.1002/anie.201503188
      [16]
      Z.L. Jian, Y.S. Hu, X.L. Ji, and W. Chen, NASICON-structured materials for energy storage, Adv. Mater., 29(2017), No. 20, art. No. 1601925. doi: 10.1002/adma.201601925
      [17]
      J.Z. Sheng, H. Zang, C.J. Tang, et al., Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries, Nano Energy, 24(2016), p. 130. doi: 10.1016/j.nanoen.2016.04.021
      [18]
      Z.Q. Lv, M.X. Ling, H.M. Yi, H.M. Zhang, Q. Zheng, and X.F. Li, Electrode design for high-performance sodium-ion batteries: Coupling nanorod-assembled Na3V2(PO4)3@C microspheres with a 3D conductive charge transport network, ACS Appl. Mater. Interfaces, 12(2020), No. 12, p. 13869. doi: 10.1021/acsami.9b22746
      [19]
      J.Z. Guo, P.F. Wang, X.L. Wu, et al., High-energy/power and low-temperature cathode for sodium-ion batteries: In situ XRD study and superior full-cell performance, Adv. Mater., 29(2017), No. 33, art. No. 1701968. doi: 10.1002/adma.201701968
      [20]
      G. Deng, D.L. Chao, Y.W. Guo, et al., Graphene quantum dots-shielded Na3(VO)2(PO4)2F@C nanocuboids as robust cathode for Na-ion battery, Energy Storage Mater., 5(2016), p. 198. doi: 10.1016/j.ensm.2016.07.007
      [21]
      F. Sauvage, E. Quarez, J.M. Tarascon, and E. Baudrin, Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5, Solid State Sci., 8(2006), No. 10, p. 1215. doi: 10.1016/j.solidstatesciences.2006.05.009
      [22]
      H.Y. Jin, J. Dong, E. Uchaker, et al., Three dimensional architecture of carbon wrapped multilayer Na3V2O2(PO4)2F nanocubes embedded in graphene for improved sodium ion batteries, J. Mater. Chem. A, 3(2015), No. 34, p. 17563. doi: 10.1039/C5TA03164H
      [23]
      P.R. Kumar, Y.H. Jung, J.E. Wang, and D.K. Kim, Na3V2O2(PO4)2F–MWCNT nanocomposites as a stable and high rate cathode for aqueous and non-aqueous sodium-ion batteries, J. Power Sources, 324(2016), p. 421. doi: 10.1016/j.jpowsour.2016.05.096
      [24]
      Y.M. Yin, F.Y. Xiong, C.Y. Pei, et al., Robust three-dimensional graphene skeleton encapsulated Na3V2O2(PO4)2F nanoparticles as a high-rate and long-life cathode of sodium-ion batteries, Nano Energy, 41(2017), p. 452. doi: 10.1016/j.nanoen.2017.09.056
      [25]
      Y.R. Qi, Z.Z. Tong, J.M. Zhao, et al., Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes, Joule, 2(2018), No. 11, p. 2348. doi: 10.1016/j.joule.2018.07.027
      [26]
      L.N. Zhao, X.H. Rong, Y.S. Niu, et al., Ostwald ripening tailoring hierarchically porous Na3V2(PO4)2O2F hollow nanospheres for superior high-rate and ultrastable sodium ion storage, Small, 16(2020), No. 48, art. No. 2004925. doi: 10.1002/smll.202004925
      [27]
      J. Liu, L.L. Zhang, X.Z. Cao, et al., Achieving the stable structure and superior performance of Na3V2(PO4)2O2F cathodes via Na-site regulation, ACS Appl. Energy Mater., 3(2020), No. 8, p. 7649. doi: 10.1021/acsaem.0c01077
      [28]
      L.J. Yue, C. Peng, C.L. Guo, et al., Na3V2−xFex(PO4)2O2F: An advanced cathode material with ultra-high stability for superior sodium storage, Chem. Eng. J., 441(2022), art. No. 136132. doi: 10.1016/j.cej.2022.136132
      [29]
      R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst., A32(1976), No. 5, p. 751.
      [30]
      L.N. Zhao, H.L. Zhao, Z.H. Du, et al., Delicate lattice modulation enables superior Na storage performance of Na3V2(PO4)3 as both an anode and cathode material for sodium-ion batteries: Understanding the role of calcium substitution for vanadium, J. Mater. Chem. A, 7(2019), No. 16, p. 9807. doi: 10.1039/C9TA00869A
      [31]
      Y.J. Chen, J. Cheng, C. Wang, et al., Simultaneous modified Na2.9V1.9Zr0.1(PO4)3/C@rGO as a superior high rate and ultralong lifespan cathode for symmetric sodium ion batteries, Chem. Eng. J., 413(2021), art. No. 127451. doi: 10.1016/j.cej.2020.127451
      [32]
      X. Ou, X.H. Liang, C.H. Yang, et al., Mn doped NaV3(PO4)3/C anode with high-rate and long cycle-life for sodium ion batteries, Energy Storage Mater., 12(2018), p. 153. doi: 10.1016/j.ensm.2017.12.007
      [33]
      X.J. Dong, X.Z. Liu, P.K. Shen, and J.L. Zhu, Phase evolution of VC–VO heterogeneous particles to facilitate sulfur species conversion in Li-S batteries, Adv. Funct. Mater., 33(2023), No. 3, art. No. 2210987. doi: 10.1002/adfm.202210987
      [34]
      X.L. Jia, L.X. Wei, L.J. Xu, Y.Y. Hu, H.Y. Guo, and Y.J. Li, Nb5+ doped Li1.20Mn0.54Ni0.13Co0.13O2 with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) surface modification as advanced cathode material for Li-ion batteries, J. Alloys Compd., 832(2020), art. No. 154986. doi: 10.1016/j.jallcom.2020.154986
      [35]
      J. Cheng, Y.J. Chen, S.Q. Sun, et al., Boosting the rate capability and cycle life of Zr-substituted Na3V2(PO4)3/C enwrapped on carbon nanotubes for symmetric Na-ion batteries, Electrochim. Acta, 385(2021), art. No. 138427. doi: 10.1016/j.electacta.2021.138427
      [36]
      A. Tang, S. Zhang, W.G. Lin, et al., Ternary NASICON-typed Na3.8MnV0.8Zr0.2(PO4)3 cathode with stable Mn2+/Mn3+ redox and fast sodiation/desodiation kinetics for Na-ion batteries, Energy Storage Mater., 58(2023), p. 271. doi: 10.1016/j.ensm.2023.03.024
      [37]
      S.J. Lim, D.W. Han, D.H. Nam, et al., Structural enhancement of Na3V2(PO4)3/C composite cathode materials by pillar ion doping for high power and long cycle life sodium-ion batteries, J. Mater. Chem. A, 2(2014), No. 46, p. 19623. doi: 10.1039/C4TA03948C
      [38]
      Y.Y. Qiu, F. Fu, M. Hu, P.K. Shen, and J.L. Zhu, Tailored chemically bonded metal phosphide@carbon nanowire arrays on foam metal as an all-in-one anode for ultrahigh-area-capacity sodium-ion batteries, Chem. Eng. J., 454(2023), art. No. 140402. doi: 10.1016/j.cej.2022.140402
      [39]
      Y.N. Wang, H. Li, Z.K. Wang, Q.F. Li, C. Lian, and X. He, Progress on failure mechanism of lithium ion battery caused by diffusion induced stress, J. Inorg. Mater., 35(2020), No. 10, art. No. 1071. doi: 10.15541/jim20190622
      [40]
      B. Lu, Y.C. Song, and J.Q. Zhang, Selection of charge methods for lithium ion batteries by considering diffusion induced stress and charge time, J. Power Sources, 320(2016), p. 104. doi: 10.1016/j.jpowsour.2016.04.079
      [41]
      K.J. Zhao, M. Pharr, J.J. Vlassak, and Z.G. Suo, Fracture of electrodes in lithium-ion batteries caused by fast charging, J. Appl. Phys., 108(2010), No. 7, art. No. 073517. doi: 10.1063/1.3492617

    Catalog


    • /

      返回文章
      返回