Cite this article as:

Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li, and Hailei Zhao, Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.1859-1867. https://dx.doi.org/10.1007/s12613-023-2666-x
Jie Wang, Yifeng Yuan, Xianhui Rao, Min’an Yang, Doudou Wang, Ailing Zhang, Yan Chen, Zhaolin Li, and Hailei Zhao, Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp.1859-1867. https://dx.doi.org/10.1007/s12613-023-2666-x
引用本文 PDF XML SpringerLink

晶格铌掺杂实现高性能钠离子电池Na3V2(PO4)2O2F正极材料

摘要: 聚阴离子型正极材料Na3V2(PO4)2O2F因其较高的工作电压以及良好的结构稳定性和热稳定性受到了研究者的广泛关注。然而,其本征电子电导率低下的缺点直接造成电极反应动力学缓慢,制约其电化学性能发挥,进而限制其实用化发展。本文旨在开发出一种倍率性能优异的Na3V2(PO4)2O2F正极材料,通过溶剂热法结合后续热处理制备了不同Nb掺杂量的Na3V2−xNbx(PO4)2O2F/石墨烯复合正极材料(x = 0, 0.05, 0.1)。研究结果表明,相较于未掺杂样品(Na3V2(PO4)2O2F/石墨烯),晶格V位高价Nb5+元素掺杂(Na3V1.95Nb0.05(PO4)2O2F/石墨烯)能够产生V4+/V3+混合电价,降低了结构中电子跃迁禁带宽度,从而提高了材料的本征电子电导率。同时,扩展的晶格空间有利于结构中Na+迁移。此外,所制备的复合正极材料表现出活性颗粒紧密附着于石墨烯片层上的结构特点,电极内部所建立的高速电子导电网络进一步加速了电极反应动力学。因此,所制备的Na3V1.95Nb0.05(PO4)2O2F/石墨烯正极材料表现出优异的倍率性能和良好的长循环稳定性:10C电流密度下的循环可逆比容量可达~72 mAh·g−1(相较于0.5C电流密度下的容量保持率为65.2%);5C电流密度下500次循环,电极容量衰减率为~0.099%每循环。

 

Realizing high-performance Na3V2(PO4)2O2F cathode for sodium-ion batteries via Nb-doping

Abstract: Na3V2(PO4)2O2F (NVPOF) has received considerable interest as a promising cathode material for sodium-ion batteries because of its high working voltage and good structural/thermal stability. However, the sluggish electrode reaction resulting from its low intrinsic electronic conductivity significantly restricts its electrochemical performance and thus its practical application. Herein, Nb-doped Na3V2−xNbx(PO4)2O2F/graphene (rGO) composites (x = 0, 0.05, 0.1) were prepared using a solvothermal method followed by calcination. Compared to the un-doped NVPOF/rGO, doping V-site with high-valence Nb element (Nb5+) (Na3V1.95Nb0.05(PO4)2O2F/rGO (NVN05POF/rGO)) can result in the generated V4+/V3+ mixed-valence, ensuring the lower bandgap and thus the increased intrinsic electronic conductivity. Besides, the expanded lattice space favors the Na+ migration. With the structure feature where NVN05POF particles are attached to the rGO sheets, the electrode reaction kinetics is further accelerated owing to the well-constructed electron conductive network. As a consequence, the as-prepared NVN05POF/rGO sample exhibits a high specific capacity of ~72 mAh·g−1 at 10C (capacity retention of 65.2% (vs. 0.5C)) and excellent long-term cycling stability with the capacity fading rate of ~0.099% per cycle in 500 cycles at 5C.

 

/

返回文章
返回