留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 11
Nov.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1574
  • HTML全文浏览量:  351
  • PDF下载量:  48
  • 被引次数: 0
Tao Zhong, Haoyu Zhang, Mengchen Song, Yiqun Jiang, Danhong Shang, Fuying Wu,  and Liuting Zhang, FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2270-2279. https://doi.org/10.1007/s12613-023-2669-7
Cite this article as:
Tao Zhong, Haoyu Zhang, Mengchen Song, Yiqun Jiang, Danhong Shang, Fuying Wu,  and Liuting Zhang, FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2270-2279. https://doi.org/10.1007/s12613-023-2669-7
引用本文 PDF XML SpringerLink
研究论文

FeCoNiCrMo高熵纳米片催化改善氢化镁的固态储氢性能


  • 通讯作者:

    吴富英    E-mail: wufuying@just.edu.cn

    张刘挺    E-mail: zhanglt89@just.edu.cn

文章亮点

  • (1) 通过湿化学球磨制备了FeCoNiCrMo高熵合金纳米片。
  • (2) 首次将高熵合金FeCoNiCrMo纳米引入到MgH2体系中,较好的改进了其储氢性能。
  • (3) Fe、Co、Ni、Cr和Mo五种元素的协同催化作用,有助于MgH2中氢的快速转移。
  • 作为一种高密度(7.6wt%,110 kg·m−3)固态储氢材料,氢化镁(MgH2)在氢气运输和储存方面大有可为。然而,其稳定的热力学特性和缓慢的动力学特性限制了其实际应用。在各种被采用的改性方法中,催化掺杂被证实在调整MgH2放氢和吸氢性能方面发挥着重要作用。本文首次研究了铁钴镍铬钼高熵合金纳米片对MgH2储氢性能的催化作用。实验结果表明,掺杂了9wt% FeCoNiCrMo的MgH2在200°C开始脱氢,并在325°C下60分钟内释放出5.89wt%的氢。完全脱氢的复合材料可在低至100°C的温度下于50分钟内吸收3.23wt%的氢气。与MgH2相比,复合材料的脱氢 ((84.47 ± 1.09) kJ·mol−1)和加氢((33.02 ± 0.10) kJ·mol−1)活化能分别比MgH2降低了44.21%和55.22%。此外,复合材料的氢容量在20次循环后仅下降了0.28wt%,显示出良好的循环稳定性。微观结构分析证实,在循环过程中,Fe、Co、Ni、Cr和Mo五种元素以高熵合金的形式稳定存在,五种元素协同催化促进了MgH2的脱氢/加氢反应。此外,FeCoNiCrMo和MgH2之间的紧密接触提供了大量的异质活化位点和扩散通道,有助于MgH2–9wt% FeCoNiCrMo复合材料中氢的快速转移。
  • Research Article

    FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage

    + Author Affiliations
    • The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride (MgH2) was investigated for the first time in this paper. Experimental results demonstrated that 9wt% FeCoNiCrMo doped MgH2 started to dehydrogenate at 200°C and discharged up to 5.89wt% hydrogen within 60 min at 325°C. The fully dehydrogenated composite could absorb 3.23wt% hydrogen in 50 min at a temperature as low as 100°C. The calculated de/hydrogenation activation energy values decreased by 44.21%/55.22% compared with MgH2, respectively. Moreover, the composite’s hydrogen capacity dropped only 0.28wt% after 20 cycles, demonstrating remarkable cycling stability. The microstructure analysis verified that the five elements, Fe, Co, Ni, Cr, and Mo, remained stable in the form of high entropy alloy during the cycling process, and synergistically serving as a catalytic union to boost the de/hydrogenation reactions of MgH2. Besides, the FeCoNiCrMo nanosheets had close contact with MgH2, providing numerous non-homogeneous activation sites and diffusion channels for the rapid transfer of hydrogen, thus obtaining a superior catalytic effect.
    • loading
    • [1]
      T.Z. Wang, X.J. Cao, and L.F. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production, eScience, 1(2021), No. 1, p. 69. doi: 10.1016/j.esci.2021.09.002
      [2]
      M.C. Song, L.T. Zhang, F.Y. Wu, et al., Recent advances of magnesium hydride as an energy storage material, J. Mater. Sci. Technol., 149(2023), p. 99. doi: 10.1016/j.jmst.2022.11.032
      [3]
      Z.Q. Lan, H.R. Liang, X.B. Wen, et al., Experimental and theoretical studies on two-dimensional vanadium carbide hybrid nanomaterials derived from V4AlC3 as excellent catalyst for MgH2, J. Magnes. Alloys, (2022). https://doi.org/10.1016/j.jma.2022.09.019
      [4]
      Y.X. Jia, X.C. Wang, L.J. Hu, et al., Carbon composite support improving catalytic effect of NbC nanoparticles on the low-temperature hydrogen storage performance of MgH2, J. Mater. Sci. Technol., 150(2023), p. 65. doi: 10.1016/j.jmst.2022.11.044
      [5]
      L. Zang, W.Y. Sun, S. Liu, et al., Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2, ACS Appl. Mater. Interfaces, 10(2018), No. 23, p. 19598. doi: 10.1021/acsami.8b02327
      [6]
      N.A. Sazelee and M. Ismail, Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review, Int. J. Hydrogen Energy, 46(2021), No. 13, p. 9123. doi: 10.1016/j.ijhydene.2020.12.208
      [7]
      T. Wang and K.F. Aguey-Zinsou, Controlling the growth of NaBH4 nanoparticles for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 3, p. 2054. doi: 10.1016/j.ijhydene.2019.11.061
      [8]
      Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58. doi: 10.1016/j.jma.2018.12.001
      [9]
      Q. Luo, Y.L. Guo, B. Liu, et al., Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171. doi: 10.1016/j.jmst.2020.01.022
      [10]
      S. Guemou, D.Q. Gao, F.Y. Wu, et al., Enhanced hydrogen storage kinetics of MgH2 by the synergistic effect of Mn3O4/ZrO2 nanoparticles, Dalton Trans., 52(2023), No. 3, p. 609. doi: 10.1039/D2DT03769F
      [11]
      S.M. Zhou, D. Wei, H.Y. Wan, et al., Efficient catalytic effect of the page-like MnCo2O4.5 catalyst on the hydrogen storage performance of MgH2, Inorg. Chem. Front., 9(2022), No. 21, p. 5495. doi: 10.1039/D2QI01715F
      [12]
      X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064. doi: 10.1016/j.mtnano.2019.100064
      [13]
      Z. Ding, Y.T. Li, H. Yang, et al., Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis, J. Magnes. Alloys, 10(2022), No. 11, p. 2946. doi: 10.1016/j.jma.2022.09.028
      [14]
      R.B. Strozi, D.R. Leiva, J. Huot, W.J. Botta, and G. Zepon, Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys, Int. J. Hydrogen Energy, 46(2021), No. 2, p. 2351. doi: 10.1016/j.ijhydene.2020.10.106
      [15]
      J. Cermak, L. Kral, and P. Roupcova, Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg, Renew. Energy, 188(2022), p. 411. doi: 10.1016/j.renene.2022.02.021
      [16]
      A. Grill, J. Horky, A. Panigrahi, G. Krexner, and M. Zehetbauer, Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation, Int. J. Hydrogen Energy, 40(2015), No. 47, p. 17144. doi: 10.1016/j.ijhydene.2015.05.145
      [17]
      J.J. Márquez, J. Soyama, R.D.A. Silva, et al., Processing of MgH2 by extensive cold rolling under protective atmosphere, Int. J. Hydrogen Energy, 42(2017), No. 4, p. 2201. doi: 10.1016/j.ijhydene.2016.10.056
      [18]
      Y. Zhong, X.F. Wan, Z. Ding, and L.L. Shaw, New dehydrogenation pathway of LiBH4 + MgH2 mixtures enabled by nanoscale LiBH4, Int. J. Hydrogen Energy, 41(2016), No. 47, p. 22104. doi: 10.1016/j.ijhydene.2016.09.195
      [19]
      G. Mulas, R. Campesi, S. Garroni, et al., Hydrogen storage in 2NaBH4 + MgH2 mixtures: Destabilization by additives and nanoconfinement, J. Alloys Compd., 536(2012), Suppl. 1, p. S236.
      [20]
      Z.Y. Lu, J.H. He, M.C. Song, et al., Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 44. doi: 10.1007/s12613-021-2372-5
      [21]
      Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
      [22]
      N. Sazelee, M.F.M. Din, and M. Ismail, Ni0.6Zn0.4O synthesised via a solid-state method for promoting hydrogen sorption from MgH2, Materials, 16(2023), No. 6, art. No. 2176. doi: 10.3390/ma16062176
      [23]
      X.Q. Duan, G.X. Li, W.H. Zhang, et al., Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: From performance to mechanism, Rare Met., 42(2023), No. 6, p. 1923. doi: 10.1007/s12598-022-02231-7
      [24]
      G.B. Tian, F.Y. Wu, H.Y. Zhang, J. Wei, H. Zhao, and L.T. Zhang, Boosting the hydrogen storage performance of MgH2 by Vanadium based complex oxides, J. Phys. Chem. Solids, 174(2023), art. No. 111187. doi: 10.1016/j.jpcs.2022.111187
      [25]
      M.M. Jiang, J. Xu, P. Munroe, and Z.H. Xie, First-principles study on the hydrogen storage properties of MgH2(101) surface by CuNi co-doping, Chem. Phys., 565(2023), art. No. 111760. doi: 10.1016/j.chemphys.2022.111760
      [26]
      S.A. Pighin, G. Capurso, S.L. Russo, and H.A. Peretti, Hydrogen sorption kinetics of magnesium hydride enhanced by the addition of Zr8Ni21 alloy, J. Alloys Compd., 530(2012), p. 111. doi: 10.1016/j.jallcom.2012.03.100
      [27]
      X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101. doi: 10.1016/j.cej.2021.130101
      [28]
      Y.Y. Zhao, Y.F. Zhu, J.C. Liu, et al., Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C, J. Alloys Compd., 862(2021), art. No. 158004. doi: 10.1016/j.jallcom.2020.158004
      [29]
      S. Singh, A. Bhatnagar, V. Shukla, et al., Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2, Int. J. Hydrogen Energy, 45(2020), No. 1, p. 774. doi: 10.1016/j.ijhydene.2019.10.204
      [30]
      A.G. Manjón, T. Löffler, M. Meischein, et al., Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: Effect of structure and composition on oxygen reduction activity, Nanoscale, 12(2020), No. 46, p. 23570. doi: 10.1039/D0NR07632E
      [31]
      D.S. Wu, K. Kusada, T. Yamamoto, et al., On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles, Chem. Sci., 11(2020), No. 47, p. 12731. doi: 10.1039/D0SC02351E
      [32]
      H.J. Qiu, G. Fang, J.J. Gao, et al., Noble metal-free nanoporous high-entropy alloys as high efficient electrocatalysts for oxygen evolution reaction, ACS Materials Lett., 1(2019), No. 5, p. 526. doi: 10.1021/acsmaterialslett.9b00414
      [33]
      Y.G. Yao, Z.Y. Liu, P.F. Xie, et al., Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts, Sci. Adv., 6(2020), No. 11, art. No. eaaz0510. doi: 10.1126/sciadv.aaz0510
      [34]
      P. Meena, R. Singh, V.K. Sharma, and I.P. Jain, Role of NiMn9.3Al4.0Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2, J. Magnes. Alloys, 6(2018), No. 3, p. 318. doi: 10.1016/j.jma.2018.05.007
      [35]
      M.S. El-Eskandarany, S.A. Ahmed, and E. Shaban, Metallic glassy V45Zr20Ni20Cu10Al3Pd2 alloy powders for superior hydrogenation/dehydrogenation kinetics of MgH2, Mater. Today, 5(2018), No. 5, p. 13718. doi: 10.1016/j.matpr.2018.02.010
      [36]
      P. Edalati, R. Floriano, A. Mohammadi, et al., Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi, Scripta Mater., 178(2020), p. 387. doi: 10.1016/j.scriptamat.2019.12.009
      [37]
      R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33759. doi: 10.1016/j.ijhydene.2020.09.047
      [38]
      R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23757. doi: 10.1016/j.ijhydene.2021.04.181
      [39]
      A. Mohammadi, Y. Ikeda, P. Edalati, et al., High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments, Acta Mater., 236(2022), art. No. 118117. doi: 10.1016/j.actamat.2022.118117
      [40]
      R.V. Muraleedharan, On Johnson-Mehl-Avrami equation, J. Therm. Anal., 37(1991), No. 11, p. 2729.
      [41]
      E. Xu, H. Li, X.M. You, et al., Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057. doi: 10.1016/j.ijhydene.2016.12.102
      [42]
      M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, and N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8(2020), No. 3, p. 832. doi: 10.1016/j.jma.2020.04.002
      [43]
      M.S. El-Eskandarany, E. Shaban, H. Al-Matrouk, et al., Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10wt% ZrNi5 powders, Mater. Today Energy, 3(2017), p. 60. doi: 10.1016/j.mtener.2016.12.002
      [44]
      M.S. Yahya and M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem., 28(2019), p. 46. doi: 10.1016/j.jechem.2017.10.020
      [45]
      J.Q. Zhang, Q.H. Hou, X.T. Guo, and X.L. Yang, Achieve high-efficiency hydrogen storage of MgH2 catalyzed by nanosheets CoMoO4 and rGO, J. Alloys Compd., 911(2022), art. No. 165153. doi: 10.1016/j.jallcom.2022.165153
      [46]
      C.S. Zhou, R.C. Bowman Jr., Z.Z. Fang, et al., Amorphous TiCu-based additives for improving hydrogen storage properties of magnesium hydride, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38868. doi: 10.1021/acsami.9b16076
      [47]
      M.S. Yahya, N.N. Sulaiman, N.S. Mustafa, F.A.H. Yap, and M. Ismail, Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7, Int. J. Hydrogen Energy, 43(2018), No. 31, p. 14532. doi: 10.1016/j.ijhydene.2018.05.157
      [48]
      M.S. El-Eskandarany, F. Al-Ajmi, and M. Banyan, Mechanically-induced catalyzation of MgH2 powders with Zr2Ni-ball milling media, Catalysts, 9(2019), No. 4, art. No. 382. doi: 10.3390/catal9040382
      [49]
      L.T. Zhang, Z.L. Cai, X.Q. Zhu, et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2, J. Alloys Compd., 805(2019), p. 295. doi: 10.1016/j.jallcom.2019.07.085
      [50]
      M.C. Song, L.T. Zhang, Z.D. Yao, et al., Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH2, Inorg. Chem. Front., 9(2022), No. 15, p. 3874. doi: 10.1039/D2QI00863G
      [51]
      L.T. Zhang, H.J. Yu, Z.Y. Lu, et al., The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2, Chin. J. Chem. Eng., 43(2022), p. 343. doi: 10.1016/j.cjche.2021.10.016
      [52]
      N. Xu, Z.R. Yuan, Z.H. Ma, et al., Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 54. doi: 10.1007/s12613-022-2510-8
      [53]
      J. Bystrzycki, T. Czujko, and R.A. Varin, Processing by controlled mechanical milling of nanocomposite powders Mg + X (X = Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties, J. Alloys Compd., 404-406(2005), p. 507. doi: 10.1016/j.jallcom.2004.10.094
      [54]
      Z.Y. Han, S.X. Zhou, H.P. Chen, H.L. Niu, and N.F. Wang, Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 2, p. 299. doi: 10.1007/s11595-017-1596-8
      [55]
      N.K. Katiyar, K. Biswas, J.W. Yeh, S. Sharma, and C.S. Tiwary, A perspective on the catalysis using the high entropy alloys, Nano Energy, 88(2021), art. No. 106261. doi: 10.1016/j.nanoen.2021.106261

    Catalog


    • /

      返回文章
      返回