Cite this article as:

Tao Zhong, Haoyu Zhang, Mengchen Song, Yiqun Jiang, Danhong Shang, Fuying Wu, and Liuting Zhang, FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp.2270-2279. https://dx.doi.org/10.1007/s12613-023-2669-7
Tao Zhong, Haoyu Zhang, Mengchen Song, Yiqun Jiang, Danhong Shang, Fuying Wu, and Liuting Zhang, FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp.2270-2279. https://dx.doi.org/10.1007/s12613-023-2669-7
引用本文 PDF XML SpringerLink

FeCoNiCrMo高熵纳米片催化改善氢化镁的固态储氢性能

摘要: 作为一种高密度(7.6wt%,110 kg·m−3)固态储氢材料,氢化镁(MgH2)在氢气运输和储存方面大有可为。然而,其稳定的热力学特性和缓慢的动力学特性限制了其实际应用。在各种被采用的改性方法中,催化掺杂被证实在调整MgH2放氢和吸氢性能方面发挥着重要作用。本文首次研究了铁钴镍铬钼高熵合金纳米片对MgH2储氢性能的催化作用。实验结果表明,掺杂了9wt% FeCoNiCrMo的MgH2在200°C开始脱氢,并在325°C下60分钟内释放出5.89wt%的氢。完全脱氢的复合材料可在低至100°C的温度下于50分钟内吸收3.23wt%的氢气。与MgH2相比,复合材料的脱氢 ((84.47 ± 1.09) kJ·mol−1)和加氢((33.02 ± 0.10) kJ·mol−1)活化能分别比MgH2降低了44.21%和55.22%。此外,复合材料的氢容量在20次循环后仅下降了0.28wt%,显示出良好的循环稳定性。微观结构分析证实,在循环过程中,Fe、Co、Ni、Cr和Mo五种元素以高熵合金的形式稳定存在,五种元素协同催化促进了MgH2的脱氢/加氢反应。此外,FeCoNiCrMo和MgH2之间的紧密接触提供了大量的异质活化位点和扩散通道,有助于MgH2–9wt% FeCoNiCrMo复合材料中氢的快速转移。

 

FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage

Abstract: The catalytic effect of FeCoNiCrMo high entropy alloy nanosheets on the hydrogen storage performance of magnesium hydride (MgH2) was investigated for the first time in this paper. Experimental results demonstrated that 9wt% FeCoNiCrMo doped MgH2 started to dehydrogenate at 200°C and discharged up to 5.89wt% hydrogen within 60 min at 325°C. The fully dehydrogenated composite could absorb 3.23wt% hydrogen in 50 min at a temperature as low as 100°C. The calculated de/hydrogenation activation energy values decreased by 44.21%/55.22% compared with MgH2, respectively. Moreover, the composite’s hydrogen capacity dropped only 0.28wt% after 20 cycles, demonstrating remarkable cycling stability. The microstructure analysis verified that the five elements, Fe, Co, Ni, Cr, and Mo, remained stable in the form of high entropy alloy during the cycling process, and synergistically serving as a catalytic union to boost the de/hydrogenation reactions of MgH2. Besides, the FeCoNiCrMo nanosheets had close contact with MgH2, providing numerous non-homogeneous activation sites and diffusion channels for the rapid transfer of hydrogen, thus obtaining a superior catalytic effect.

 

/

返回文章
返回