Cite this article as: |
Tao Zhong, Haoyu Zhang, Mengchen Song, Yiqun Jiang, Danhong Shang, Fuying Wu, and Liuting Zhang, FeCoNiCrMo high entropy alloy nanosheets catalyzed magnesium hydride for solid-state hydrogen storage, Int. J. Miner. Metall. Mater., 30(2023), No. 11, pp. 2270-2279. https://doi.org/10.1007/s12613-023-2669-7 |
吴富英 E-mail: wufuying@just.edu.cn
张刘挺 E-mail: zhanglt89@just.edu.cn
[1] |
T.Z. Wang, X.J. Cao, and L.F. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production, eScience, 1(2021), No. 1, p. 69. doi: 10.1016/j.esci.2021.09.002
|
[2] |
M.C. Song, L.T. Zhang, F.Y. Wu, et al., Recent advances of magnesium hydride as an energy storage material, J. Mater. Sci. Technol., 149(2023), p. 99. doi: 10.1016/j.jmst.2022.11.032
|
[3] |
Z.Q. Lan, H.R. Liang, X.B. Wen, et al., Experimental and theoretical studies on two-dimensional vanadium carbide hybrid nanomaterials derived from V4AlC3 as excellent catalyst for MgH2, J. Magnes. Alloys, (2022). https://doi.org/10.1016/j.jma.2022.09.019
|
[4] |
Y.X. Jia, X.C. Wang, L.J. Hu, et al., Carbon composite support improving catalytic effect of NbC nanoparticles on the low-temperature hydrogen storage performance of MgH2, J. Mater. Sci. Technol., 150(2023), p. 65. doi: 10.1016/j.jmst.2022.11.044
|
[5] |
L. Zang, W.Y. Sun, S. Liu, et al., Enhanced hydrogen storage properties and reversibility of LiBH4 confined in two-dimensional Ti3C2, ACS Appl. Mater. Interfaces, 10(2018), No. 23, p. 19598. doi: 10.1021/acsami.8b02327
|
[6] |
N.A. Sazelee and M. Ismail, Recent advances in catalyst-enhanced LiAlH4 for solid-state hydrogen storage: A review, Int. J. Hydrogen Energy, 46(2021), No. 13, p. 9123. doi: 10.1016/j.ijhydene.2020.12.208
|
[7] |
T. Wang and K.F. Aguey-Zinsou, Controlling the growth of NaBH4 nanoparticles for hydrogen storage, Int. J. Hydrogen Energy, 45(2020), No. 3, p. 2054. doi: 10.1016/j.ijhydene.2019.11.061
|
[8] |
Q. Luo, J.D. Li, B. Li, B. Liu, H.Y. Shao, and Q. Li, Kinetics in Mg-based hydrogen storage materials: Enhancement and mechanism, J. Magnes. Alloys, 7(2019), No. 1, p. 58. doi: 10.1016/j.jma.2018.12.001
|
[9] |
Q. Luo, Y.L. Guo, B. Liu, et al., Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171. doi: 10.1016/j.jmst.2020.01.022
|
[10] |
S. Guemou, D.Q. Gao, F.Y. Wu, et al., Enhanced hydrogen storage kinetics of MgH2 by the synergistic effect of Mn3O4/ZrO2 nanoparticles, Dalton Trans., 52(2023), No. 3, p. 609. doi: 10.1039/D2DT03769F
|
[11] |
S.M. Zhou, D. Wei, H.Y. Wan, et al., Efficient catalytic effect of the page-like MnCo2O4.5 catalyst on the hydrogen storage performance of MgH2, Inorg. Chem. Front., 9(2022), No. 21, p. 5495. doi: 10.1039/D2QI01715F
|
[12] |
X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, and H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater. Today Nano, 9(2020), art. No. 100064. doi: 10.1016/j.mtnano.2019.100064
|
[13] |
Z. Ding, Y.T. Li, H. Yang, et al., Tailoring MgH2 for hydrogen storage through nanoengineering and catalysis, J. Magnes. Alloys, 10(2022), No. 11, p. 2946. doi: 10.1016/j.jma.2022.09.028
|
[14] |
R.B. Strozi, D.R. Leiva, J. Huot, W.J. Botta, and G. Zepon, Synthesis and hydrogen storage behavior of Mg–V–Al–Cr–Ni high entropy alloys, Int. J. Hydrogen Energy, 46(2021), No. 2, p. 2351. doi: 10.1016/j.ijhydene.2020.10.106
|
[15] |
J. Cermak, L. Kral, and P. Roupcova, Hydrogen storage in TiVCrMo and TiZrNbHf multiprinciple-element alloys and their catalytic effect upon hydrogen storage in Mg, Renew. Energy, 188(2022), p. 411. doi: 10.1016/j.renene.2022.02.021
|
[16] |
A. Grill, J. Horky, A. Panigrahi, G. Krexner, and M. Zehetbauer, Long-term hydrogen storage in Mg and ZK60 after Severe Plastic Deformation, Int. J. Hydrogen Energy, 40(2015), No. 47, p. 17144. doi: 10.1016/j.ijhydene.2015.05.145
|
[17] |
J.J. Márquez, J. Soyama, R.D.A. Silva, et al., Processing of MgH2 by extensive cold rolling under protective atmosphere, Int. J. Hydrogen Energy, 42(2017), No. 4, p. 2201. doi: 10.1016/j.ijhydene.2016.10.056
|
[18] |
Y. Zhong, X.F. Wan, Z. Ding, and L.L. Shaw, New dehydrogenation pathway of LiBH4 + MgH2 mixtures enabled by nanoscale LiBH4, Int. J. Hydrogen Energy, 41(2016), No. 47, p. 22104. doi: 10.1016/j.ijhydene.2016.09.195
|
[19] |
G. Mulas, R. Campesi, S. Garroni, et al., Hydrogen storage in 2NaBH4 + MgH2 mixtures: Destabilization by additives and nanoconfinement, J. Alloys Compd., 536(2012), Suppl. 1, p. S236.
|
[20] |
Z.Y. Lu, J.H. He, M.C. Song, et al., Bullet-like vanadium-based MOFs as a highly active catalyst for promoting the hydrogen storage property in MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 44. doi: 10.1007/s12613-021-2372-5
|
[21] |
Z.Y. Lu, H.J. Yu, X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
|
[22] |
N. Sazelee, M.F.M. Din, and M. Ismail, Ni0.6Zn0.4O synthesised via a solid-state method for promoting hydrogen sorption from MgH2, Materials, 16(2023), No. 6, art. No. 2176. doi: 10.3390/ma16062176
|
[23] |
X.Q. Duan, G.X. Li, W.H. Zhang, et al., Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: From performance to mechanism, Rare Met., 42(2023), No. 6, p. 1923. doi: 10.1007/s12598-022-02231-7
|
[24] |
G.B. Tian, F.Y. Wu, H.Y. Zhang, J. Wei, H. Zhao, and L.T. Zhang, Boosting the hydrogen storage performance of MgH2 by Vanadium based complex oxides, J. Phys. Chem. Solids, 174(2023), art. No. 111187. doi: 10.1016/j.jpcs.2022.111187
|
[25] |
M.M. Jiang, J. Xu, P. Munroe, and Z.H. Xie, First-principles study on the hydrogen storage properties of MgH2(101) surface by CuNi co-doping, Chem. Phys., 565(2023), art. No. 111760. doi: 10.1016/j.chemphys.2022.111760
|
[26] |
S.A. Pighin, G. Capurso, S.L. Russo, and H.A. Peretti, Hydrogen sorption kinetics of magnesium hydride enhanced by the addition of Zr8Ni21 alloy, J. Alloys Compd., 530(2012), p. 111. doi: 10.1016/j.jallcom.2012.03.100
|
[27] |
X. Lu, L.T. Zhang, H.J. Yu, et al., Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J., 422(2021), art. No. 130101. doi: 10.1016/j.cej.2021.130101
|
[28] |
Y.Y. Zhao, Y.F. Zhu, J.C. Liu, et al., Enhancing hydrogen storage properties of MgH2 by core-shell CoNi@C, J. Alloys Compd., 862(2021), art. No. 158004. doi: 10.1016/j.jallcom.2020.158004
|
[29] |
S. Singh, A. Bhatnagar, V. Shukla, et al., Ternary transition metal alloy FeCoNi nanoparticles on graphene as new catalyst for hydrogen sorption in MgH2, Int. J. Hydrogen Energy, 45(2020), No. 1, p. 774. doi: 10.1016/j.ijhydene.2019.10.204
|
[30] |
A.G. Manjón, T. Löffler, M. Meischein, et al., Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: Effect of structure and composition on oxygen reduction activity, Nanoscale, 12(2020), No. 46, p. 23570. doi: 10.1039/D0NR07632E
|
[31] |
D.S. Wu, K. Kusada, T. Yamamoto, et al., On the electronic structure and hydrogen evolution reaction activity of platinum group metal-based high-entropy-alloy nanoparticles, Chem. Sci., 11(2020), No. 47, p. 12731. doi: 10.1039/D0SC02351E
|
[32] |
H.J. Qiu, G. Fang, J.J. Gao, et al., Noble metal-free nanoporous high-entropy alloys as high efficient electrocatalysts for oxygen evolution reaction, ACS Materials Lett., 1(2019), No. 5, p. 526. doi: 10.1021/acsmaterialslett.9b00414
|
[33] |
Y.G. Yao, Z.Y. Liu, P.F. Xie, et al., Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts, Sci. Adv., 6(2020), No. 11, art. No. eaaz0510. doi: 10.1126/sciadv.aaz0510
|
[34] |
P. Meena, R. Singh, V.K. Sharma, and I.P. Jain, Role of NiMn9.3Al4.0Co14.1Fe3.6 alloy on dehydrogenation kinetics of MgH2, J. Magnes. Alloys, 6(2018), No. 3, p. 318. doi: 10.1016/j.jma.2018.05.007
|
[35] |
M.S. El-Eskandarany, S.A. Ahmed, and E. Shaban, Metallic glassy V45Zr20Ni20Cu10Al3Pd2 alloy powders for superior hydrogenation/dehydrogenation kinetics of MgH2, Mater. Today, 5(2018), No. 5, p. 13718. doi: 10.1016/j.matpr.2018.02.010
|
[36] |
P. Edalati, R. Floriano, A. Mohammadi, et al., Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi, Scripta Mater., 178(2020), p. 387. doi: 10.1016/j.scriptamat.2019.12.009
|
[37] |
R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33759. doi: 10.1016/j.ijhydene.2020.09.047
|
[38] |
R. Floriano, G. Zepon, K. Edalati, et al., Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy, Int. J. Hydrogen Energy, 46(2021), No. 46, p. 23757. doi: 10.1016/j.ijhydene.2021.04.181
|
[39] |
A. Mohammadi, Y. Ikeda, P. Edalati, et al., High-entropy hydrides for fast and reversible hydrogen storage at room temperature: Binding-energy engineering via first-principles calculations and experiments, Acta Mater., 236(2022), art. No. 118117. doi: 10.1016/j.actamat.2022.118117
|
[40] |
R.V. Muraleedharan, On Johnson-Mehl-Avrami equation, J. Therm. Anal., 37(1991), No. 11, p. 2729.
|
[41] |
E. Xu, H. Li, X.M. You, et al., Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057. doi: 10.1016/j.ijhydene.2016.12.102
|
[42] |
M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, and N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloys, 8(2020), No. 3, p. 832. doi: 10.1016/j.jma.2020.04.002
|
[43] |
M.S. El-Eskandarany, E. Shaban, H. Al-Matrouk, et al., Structure, morphology and hydrogen storage kinetics of nanocomposite MgH2/10wt% ZrNi5 powders, Mater. Today Energy, 3(2017), p. 60. doi: 10.1016/j.mtener.2016.12.002
|
[44] |
M.S. Yahya and M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem., 28(2019), p. 46. doi: 10.1016/j.jechem.2017.10.020
|
[45] |
J.Q. Zhang, Q.H. Hou, X.T. Guo, and X.L. Yang, Achieve high-efficiency hydrogen storage of MgH2 catalyzed by nanosheets CoMoO4 and rGO, J. Alloys Compd., 911(2022), art. No. 165153. doi: 10.1016/j.jallcom.2022.165153
|
[46] |
C.S. Zhou, R.C. Bowman Jr., Z.Z. Fang, et al., Amorphous TiCu-based additives for improving hydrogen storage properties of magnesium hydride, ACS Appl. Mater. Interfaces, 11(2019), No. 42, p. 38868. doi: 10.1021/acsami.9b16076
|
[47] |
M.S. Yahya, N.N. Sulaiman, N.S. Mustafa, F.A.H. Yap, and M. Ismail, Improvement of hydrogen storage properties in MgH2 catalysed by K2NbF7, Int. J. Hydrogen Energy, 43(2018), No. 31, p. 14532. doi: 10.1016/j.ijhydene.2018.05.157
|
[48] |
M.S. El-Eskandarany, F. Al-Ajmi, and M. Banyan, Mechanically-induced catalyzation of MgH2 powders with Zr2Ni-ball milling media, Catalysts, 9(2019), No. 4, art. No. 382. doi: 10.3390/catal9040382
|
[49] |
L.T. Zhang, Z.L. Cai, X.Q. Zhu, et al., Two-dimensional ZrCo nanosheets as highly effective catalyst for hydrogen storage in MgH2, J. Alloys Compd., 805(2019), p. 295. doi: 10.1016/j.jallcom.2019.07.085
|
[50] |
M.C. Song, L.T. Zhang, Z.D. Yao, et al., Unraveling the degradation mechanism for the hydrogen storage property of Fe nanocatalyst-modified MgH2, Inorg. Chem. Front., 9(2022), No. 15, p. 3874. doi: 10.1039/D2QI00863G
|
[51] |
L.T. Zhang, H.J. Yu, Z.Y. Lu, et al., The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2, Chin. J. Chem. Eng., 43(2022), p. 343. doi: 10.1016/j.cjche.2021.10.016
|
[52] |
N. Xu, Z.R. Yuan, Z.H. Ma, et al., Effects of highly dispersed Ni nanoparticles on the hydrogen storage performance of MgH2, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 54. doi: 10.1007/s12613-022-2510-8
|
[53] |
J. Bystrzycki, T. Czujko, and R.A. Varin, Processing by controlled mechanical milling of nanocomposite powders Mg + X (X = Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties, J. Alloys Compd., 404-406(2005), p. 507. doi: 10.1016/j.jallcom.2004.10.094
|
[54] |
Z.Y. Han, S.X. Zhou, H.P. Chen, H.L. Niu, and N.F. Wang, Enhancement of the hydrogen storage properties of Mg/C nanocomposites prepared by reactive milling with molybdenum, J. Wuhan Univ. Technol. Mater. Sci. Ed., 32(2017), No. 2, p. 299. doi: 10.1007/s11595-017-1596-8
|
[55] |
N.K. Katiyar, K. Biswas, J.W. Yeh, S. Sharma, and C.S. Tiwary, A perspective on the catalysis using the high entropy alloys, Nano Energy, 88(2021), art. No. 106261. doi: 10.1016/j.nanoen.2021.106261
|