Cite this article as: |
Min Zhou, Laijun Liang, Dingze Lu, Xiaomei Lu, Zheng Wang, Fengzhen Huang, Pengfei Cheng, Dongdong Liu, Mengqi Tian, Qiuping Wang, and Yunjie Zhang, Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2044-2054. https://doi.org/10.1007/s12613-023-2671-0 |
周敏 E-mail: zhmin@xpu.edu.cn
吕笑梅 E-mail: xiaomeil@nju.edu.cn
Supplementary Information-10.1007s12613-023-2671-0.docx |
[1] |
C.Y. Yu, M.X. Tan, Y. Li, et al., Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering, J. Colloid Interface Sci., 596(2021), p. 288. doi: 10.1016/j.jcis.2021.03.040
|
[2] |
J.M. Wu, W.E. Chang, Y.T. Chang, and C.K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers, Adv. Mater., 28(2016), No. 19, p. 3718. doi: 10.1002/adma.201505785
|
[3] |
Y. Zhang, H. Khanbareh, S. Dunn, et al., High efficiency water splitting using ultrasound coupled to a BaTiO3 nanofluid, Adv. Sci., 9(2022), No. 9, art. No. e2105248. doi: 10.1002/advs.202105248
|
[4] |
S. Li, Z.C. Zhao, J.Z. Zhao, Z.T. Zhang, X. Li, and J.M. Zhang, Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications, ACS Appl. Nano Mater., 3(2020), No. 2, p. 1063. doi: 10.1021/acsanm.0c00039
|
[5] |
L.L. Zhao, Y. Zhang, F.L. Wang, et al., BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization, Nano Energy, 39(2017), p. 461. doi: 10.1016/j.nanoen.2017.07.037
|
[6] |
H. Mohapatra, M. Kleiman, and A.P. Esser-Kahn, Mechanically controlled radical polymerization initiated by ultrasound, Nat. Chem., 9(2017), No. 2, p. 135. doi: 10.1038/nchem.2633
|
[7] |
A.W. Morawski, K. Ćmielewska, E. Ekiert, et al., Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor, Chem. Eng. J., 446(2022), art. No. 137030. doi: 10.1016/j.cej.2022.137030
|
[8] |
S.Z. Oener, M.J. Foster, and S.W. Boettcher, Accelerating water dissociation in bipolar membranes and for electrocatalysis, Science, 369(2020), No. 6507, p. 1099. doi: 10.1126/science.aaz1487
|
[9] |
B.W. Yuan, J. Wu, N. Qin, E.Z. Lin, Z.H. Kang, and D.H. Bao, Sm-doped Pb(Mg1/3Nb2/3)O3–xPbTiO3 piezocatalyst: Exploring the relationship between piezoelectric property and piezocatalytic activity, Appl. Mater. Today, 17(2019), p. 183. doi: 10.1016/j.apmt.2019.07.015
|
[10] |
H. Lin, Z. Wu, Y.M. Jia, W.J. Li, R.K. Zheng, and H.S. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers, Appl. Phys. Lett., 104(2014), No. 16, art. No. 162907. doi: 10.1063/1.4873522
|
[11] |
J. Wu, N. Qin, and D.H. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration, Nano Energy, 45(2018), p. 44. doi: 10.1016/j.nanoen.2017.12.034
|
[12] |
J. Wu, N. Qin, B.W. Yuan, E.Z. Lin, and D.H. Bao, Enhanced pyroelectric catalysis of BaTiO3 nanowires for utilizing waste heat in pollution treatment, ACS Appl. Mater. Interfaces, 10(2018), No. 44, p. 37963. doi: 10.1021/acsami.8b11158
|
[13] |
J.A. Wu, Q. Xu, E.Z. Lin, et al., Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3, ACS Appl. Mater. Interfaces, 10(2018), No. 21, p. 17842. doi: 10.1021/acsami.8b01991
|
[14] |
K. Wang, F.Z. Yao, W. Jo, et al., Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv. Funct. Mater., 23(2013), No. 33, p. 4079. doi: 10.1002/adfm.201203754
|
[15] |
T.L. Zhao, A.A. Bokov, J.G. Wu, et al., Giant piezoelectricity of ternary perovskite ceramics at high temperatures, Adv. Funct. Mater., 29(2019), No. 12, art. No. 1807920. doi: 10.1002/adfm.201807920
|
[16] |
F. Wu, Y.H. Yu, H.A. Yang, et al., Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system, Adv. Mater., 29(2017), No. 28, art. No. 1701432. doi: 10.1002/adma.201701432
|
[17] |
B. Yang, H.B. Chen, Y.D. Yang, et al., Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation, Chem. Eng. J., 416(2021), art. No. 128986. doi: 10.1016/j.cej.2021.128986
|
[18] |
L.M. Tan, Q. Sun, and Y.Y. Wang, Outstanding piezoelectric properties of Al-substituted potassium–sodium niobate-based lead-free piezoceramics, J. Alloys Compd., 836(2020), art. No. 155419. doi: 10.1016/j.jallcom.2020.155419
|
[19] |
X.C. Wang, C. Meng, and Y.Y. Wang, Insight for the construction of R–T phase boundary in KNN piezoceramics from the view of energy band structure and electron density, Ceram. Int., 47(2021), No. 20, p. 28500. doi: 10.1016/j.ceramint.2021.07.006
|
[20] |
A. Zhang, Z.Y. Liu, B. Xie, et al., Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst, Appl. Catal. B, 279(2020), art. No. 119353. doi: 10.1016/j.apcatb.2020.119353
|
[21] |
F.Z. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, and J.F. Li, Enhanced bipolar fatigue resistance in CaZrO3-modified (K,Na)NbO3 lead-free piezoceramics, Appl. Phys. Lett., 104(2014), No. 24, art. No. 242912. doi: 10.1063/1.4884826
|
[22] |
M. Zhou, X.M. Lu, D.Y. Yang, et al., Induced core–shell structure and the electric properties of (K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3 ceramics, Phys. Chem. Chem. Phys., 19(2017), No. 3, p. 1868. doi: 10.1039/C6CP06111G
|
[23] |
K. Wang, J.F. Li, and N. Liu, Piezoelectric properties of low-temperature sintered Li-modified (Na,K)NbO3 lead-free ceramics, Appl. Phys. Lett., 93(2008), No. 9, art. No. 092904. doi: 10.1063/1.2977551
|
[24] |
J. Kong, L.L. Li, J.E. Liu, F.P. Marlton, M.R.V. Jørgensen, and A. Pramanick, A local atomic mechanism for monoclinic–tetragonal phase boundary creation in Li-doped Na0.5K0.5NbO3 ferroelectric solid solution, Inorg. Chem., 61(2022), No. 10, p. 4335. doi: 10.1021/acs.inorgchem.1c03501
|
[25] |
H.J. Yu, F. Chen, X.W. Li, et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction, Nat. Commun., 12(2021), art. No. 4594. doi: 10.1038/s41467-021-24882-3
|
[26] |
H.E. Mgbemere, M. Hinterstein, and G.A. Schneider, Structural phase transitions and electrical properties of (KxNa1−x)NbO3-based ceramics modified with Mn, J. Eur. Ceram. Soc., 32(2012), No. 16, p. 4341. doi: 10.1016/j.jeurceramsoc.2012.07.033
|
[27] |
M.A. Rafiq, M.E. Costa, A. Tkach, and P.M. Vilarinho, Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: A comparison study, Cryst. Growth Des., 15(2015), No. 3, p. 1289. doi: 10.1021/cg5016884
|
[28] |
M. Zhou, X.M. Lu, L. Liu, et al., Room temperature multiferroic properties and polymorphic phase transition-induced noticeable magnetodielectric anomalies in Fe/Co co-doped (K0.52Na0.48)NbO3 ceramics, J. Alloys Compd., 836(2020), art. No. 155519. doi: 10.1016/j.jallcom.2020.155519
|
[29] |
L.S. Ewe and R. Abd-Shukor, Electrical transport properties of Pr1–xSrxMnO3(x = 0 to 0.45), Adv. Appl. Ceram., 109(2010), No. 7, p. 426. doi: 10.1179/174367510X12722693956239
|
[30] |
M. Zhou, X.M. Lu, X.Y. Xu, et al., Room temperature multiferroic behavior and magnetoelectric coupling in (K,Na)NbO3-based ceramics, Ceram. Int., 44(2018), No. 12, p. 14169. doi: 10.1016/j.ceramint.2018.05.019
|
[31] |
A. Kumar, J.N. Baker, P.C. Bowes, et al., Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics, Nat. Mater., 20(2021), No. 1, p. 62. doi: 10.1038/s41563-020-0794-5
|
[32] |
B. Zhang, D. Lu, Z. Wang, et al., Highly efficient photocatalytic hydrogen production performance for 2D/0D g-C3N4/Zn0.5Cd0.5S with g-C3N4 as a transport medium for photogenerated charge carriers, J. Electrochem. Soc., 169(2022), No. 4, art. No. 046512. doi: 10.1149/1945-7111/ac6452
|
[33] |
X.E. Ning, A.Z. Hao, Y.L. Cao, N. Lv, and D.Z. Jia, Boosting piezocatalytic performance of Ag decorated ZnO by piezo-electrochemical synergistic coupling strategy, Appl. Surf. Sci., 566(2021), art. No. 150730. doi: 10.1016/j.apsusc.2021.150730
|