留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(8)

数据统计

分享

计量
  • 文章访问数:  612
  • HTML全文浏览量:  241
  • PDF下载量:  47
  • 被引次数: 0
Min Zhou, Laijun Liang, Dingze Lu, Xiaomei Lu, Zheng Wang, Fengzhen Huang, Pengfei Cheng, Dongdong Liu, Mengqi Tian, Qiuping Wang, and Yunjie Zhang, Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2044-2054. https://doi.org/10.1007/s12613-023-2671-0
Cite this article as:
Min Zhou, Laijun Liang, Dingze Lu, Xiaomei Lu, Zheng Wang, Fengzhen Huang, Pengfei Cheng, Dongdong Liu, Mengqi Tian, Qiuping Wang, and Yunjie Zhang, Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 2044-2054. https://doi.org/10.1007/s12613-023-2671-0
引用本文 PDF XML SpringerLink
研究论文

通过铁电极化和缺陷协同增强环境友好型(K0.52Na0.48)NbO3的压电催化性能



  • 通讯作者:

    周敏    E-mail: zhmin@xpu.edu.cn

    吕笑梅    E-mail: xiaomeil@nju.edu.cn

文章亮点

  • (1) KNNFC0.015较强的铁电剩余极化起源于适量单价氧空位钉扎效应,可提高电荷分离效率,减少电荷复合。
  • (2) KNNFC0.015中载流子较低的激活能加速了电子和空穴参与氧化还原反应。
  • (3) 铁电极化和有益缺陷的协同作用促进了压电催化性能的提高。
  • 压电催化作为一种新兴的催化技术引起了广泛关注。然而,铁电材料本身具有的优异的绝缘特性导致其振动-电转换能力较差。本文报道了FeCo改性(K0.52Na0.48)NbO3铁电陶瓷 (KNNFCx)。适量FeCo (x = 0.015) 取代Nb位,不仅优化了(K0.52Na0.48)NbO3的铁电性,而且产生了有益的缺陷,显著提高了对罗丹明B的降解效率,最高可达95%。在相同功率的超声作用下,KNNFC0.015对罗丹明B的降解效率分别是纯的KNNFC0的4倍以及铁电极化最大的KNNFC1的2倍。研究表明,适量的一价氧空位对铁电畴的钉扎效应导致KNNFC0.015样品可保留优异的铁电剩余极化。这促进了载流子分离,减少载流子复合。重要的是,伴随产生的电子载流子具有较低的激活能,可以很容易地迁移到材料表面并参与氧化还原反应。因此,优异的铁电性和恰当的缺陷在提高压电催化性能方面起着协同作用。
  • Research Article

    Synergically enhanced piezocatalysis performance of eco-friendly (K0.52Na0.48)NbO3 through ferroelectric polarization and defects

    + Author Affiliations
    • Piezocatalysis has attracted unprecedented research interest as a newly emerging catalysis technology. However, the inherent insulating property of ferroelectric materials ultimately leads to the poor vibration–electricity conversion ability. Herein, this work reports the (K0.52Na0.48)NbO3 ferroelectric ceramics (KNNFCx), for which the FeCo modification strategy is proposed. The substitution of the moderate amount of FeCo (x = 0.015) at Nb site not only optimizes ferroelectricity but also produces beneficial defects, notably increasing Rhodamine B water purification efficiency to 95%. The pinning effect of monovalent oxygen vacancies on ferroelectric domains is responsible for the excellent ferroelectric polarization of KNNFC0.015 through the generation of an internal field to promote charge carriers separation and reduce nonradiative recombination. Importantly, the accompanying electron carriers can easily move to the material surface and participate in redox reactions because they have low activation energy. Therefore, ferroelectric polarization and defects play synergetic roles in enhancing piezocatalytic performance.
    • loading
    • Supplementary Information-10.1007s12613-023-2671-0.docx
    • [1]
      C.Y. Yu, M.X. Tan, Y. Li, et al., Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering, J. Colloid Interface Sci., 596(2021), p. 288. doi: 10.1016/j.jcis.2021.03.040
      [2]
      J.M. Wu, W.E. Chang, Y.T. Chang, and C.K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers, Adv. Mater., 28(2016), No. 19, p. 3718. doi: 10.1002/adma.201505785
      [3]
      Y. Zhang, H. Khanbareh, S. Dunn, et al., High efficiency water splitting using ultrasound coupled to a BaTiO3 nanofluid, Adv. Sci., 9(2022), No. 9, art. No. e2105248. doi: 10.1002/advs.202105248
      [4]
      S. Li, Z.C. Zhao, J.Z. Zhao, Z.T. Zhang, X. Li, and J.M. Zhang, Recent advances of ferro-, piezo-, and pyroelectric nanomaterials for catalytic applications, ACS Appl. Nano Mater., 3(2020), No. 2, p. 1063. doi: 10.1021/acsanm.0c00039
      [5]
      L.L. Zhao, Y. Zhang, F.L. Wang, et al., BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization, Nano Energy, 39(2017), p. 461. doi: 10.1016/j.nanoen.2017.07.037
      [6]
      H. Mohapatra, M. Kleiman, and A.P. Esser-Kahn, Mechanically controlled radical polymerization initiated by ultrasound, Nat. Chem., 9(2017), No. 2, p. 135. doi: 10.1038/nchem.2633
      [7]
      A.W. Morawski, K. Ćmielewska, E. Ekiert, et al., Effective green ammonia synthesis from gaseous nitrogen and CO2 saturated-water vapour utilizing a novel photocatalytic reactor, Chem. Eng. J., 446(2022), art. No. 137030. doi: 10.1016/j.cej.2022.137030
      [8]
      S.Z. Oener, M.J. Foster, and S.W. Boettcher, Accelerating water dissociation in bipolar membranes and for electrocatalysis, Science, 369(2020), No. 6507, p. 1099. doi: 10.1126/science.aaz1487
      [9]
      B.W. Yuan, J. Wu, N. Qin, E.Z. Lin, Z.H. Kang, and D.H. Bao, Sm-doped Pb(Mg1/3Nb2/3)O3xPbTiO3 piezocatalyst: Exploring the relationship between piezoelectric property and piezocatalytic activity, Appl. Mater. Today, 17(2019), p. 183. doi: 10.1016/j.apmt.2019.07.015
      [10]
      H. Lin, Z. Wu, Y.M. Jia, W.J. Li, R.K. Zheng, and H.S. Luo, Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers, Appl. Phys. Lett., 104(2014), No. 16, art. No. 162907. doi: 10.1063/1.4873522
      [11]
      J. Wu, N. Qin, and D.H. Bao, Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration, Nano Energy, 45(2018), p. 44. doi: 10.1016/j.nanoen.2017.12.034
      [12]
      J. Wu, N. Qin, B.W. Yuan, E.Z. Lin, and D.H. Bao, Enhanced pyroelectric catalysis of BaTiO3 nanowires for utilizing waste heat in pollution treatment, ACS Appl. Mater. Interfaces, 10(2018), No. 44, p. 37963. doi: 10.1021/acsami.8b11158
      [13]
      J.A. Wu, Q. Xu, E.Z. Lin, et al., Insights into the role of ferroelectric polarization in piezocatalysis of nanocrystalline BaTiO3, ACS Appl. Mater. Interfaces, 10(2018), No. 21, p. 17842. doi: 10.1021/acsami.8b01991
      [14]
      K. Wang, F.Z. Yao, W. Jo, et al., Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv. Funct. Mater., 23(2013), No. 33, p. 4079. doi: 10.1002/adfm.201203754
      [15]
      T.L. Zhao, A.A. Bokov, J.G. Wu, et al., Giant piezoelectricity of ternary perovskite ceramics at high temperatures, Adv. Funct. Mater., 29(2019), No. 12, art. No. 1807920. doi: 10.1002/adfm.201807920
      [16]
      F. Wu, Y.H. Yu, H.A. Yang, et al., Simultaneous enhancement of charge separation and hole transportation in a TiO2–SrTiO3 core–shell nanowire photoelectrochemical system, Adv. Mater., 29(2017), No. 28, art. No. 1701432. doi: 10.1002/adma.201701432
      [17]
      B. Yang, H.B. Chen, Y.D. Yang, et al., Insights into the tribo-/pyro-catalysis using Sr-doped BaTiO3 ferroelectric nanocrystals for efficient water remediation, Chem. Eng. J., 416(2021), art. No. 128986. doi: 10.1016/j.cej.2021.128986
      [18]
      L.M. Tan, Q. Sun, and Y.Y. Wang, Outstanding piezoelectric properties of Al-substituted potassium–sodium niobate-based lead-free piezoceramics, J. Alloys Compd., 836(2020), art. No. 155419. doi: 10.1016/j.jallcom.2020.155419
      [19]
      X.C. Wang, C. Meng, and Y.Y. Wang, Insight for the construction of R–T phase boundary in KNN piezoceramics from the view of energy band structure and electron density, Ceram. Int., 47(2021), No. 20, p. 28500. doi: 10.1016/j.ceramint.2021.07.006
      [20]
      A. Zhang, Z.Y. Liu, B. Xie, et al., Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst, Appl. Catal. B, 279(2020), art. No. 119353. doi: 10.1016/j.apcatb.2020.119353
      [21]
      F.Z. Yao, E.A. Patterson, K. Wang, W. Jo, J. Rödel, and J.F. Li, Enhanced bipolar fatigue resistance in CaZrO3-modified (K,Na)NbO3 lead-free piezoceramics, Appl. Phys. Lett., 104(2014), No. 24, art. No. 242912. doi: 10.1063/1.4884826
      [22]
      M. Zhou, X.M. Lu, D.Y. Yang, et al., Induced core–shell structure and the electric properties of (K0.48Na0.52)0.95Li0.05Nb0.95Sb0.05O3 ceramics, Phys. Chem. Chem. Phys., 19(2017), No. 3, p. 1868. doi: 10.1039/C6CP06111G
      [23]
      K. Wang, J.F. Li, and N. Liu, Piezoelectric properties of low-temperature sintered Li-modified (Na,K)NbO3 lead-free ceramics, Appl. Phys. Lett., 93(2008), No. 9, art. No. 092904. doi: 10.1063/1.2977551
      [24]
      J. Kong, L.L. Li, J.E. Liu, F.P. Marlton, M.R.V. Jørgensen, and A. Pramanick, A local atomic mechanism for monoclinic–tetragonal phase boundary creation in Li-doped Na0.5K0.5NbO3 ferroelectric solid solution, Inorg. Chem., 61(2022), No. 10, p. 4335. doi: 10.1021/acs.inorgchem.1c03501
      [25]
      H.J. Yu, F. Chen, X.W. Li, et al., Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction, Nat. Commun., 12(2021), art. No. 4594. doi: 10.1038/s41467-021-24882-3
      [26]
      H.E. Mgbemere, M. Hinterstein, and G.A. Schneider, Structural phase transitions and electrical properties of (KxNa1−x)NbO3-based ceramics modified with Mn, J. Eur. Ceram. Soc., 32(2012), No. 16, p. 4341. doi: 10.1016/j.jeurceramsoc.2012.07.033
      [27]
      M.A. Rafiq, M.E. Costa, A. Tkach, and P.M. Vilarinho, Impedance analysis and conduction mechanisms of lead free potassium sodium niobate (KNN) single crystals and polycrystals: A comparison study, Cryst. Growth Des., 15(2015), No. 3, p. 1289. doi: 10.1021/cg5016884
      [28]
      M. Zhou, X.M. Lu, L. Liu, et al., Room temperature multiferroic properties and polymorphic phase transition-induced noticeable magnetodielectric anomalies in Fe/Co co-doped (K0.52Na0.48)NbO3 ceramics, J. Alloys Compd., 836(2020), art. No. 155519. doi: 10.1016/j.jallcom.2020.155519
      [29]
      L.S. Ewe and R. Abd-Shukor, Electrical transport properties of Pr1–xSrxMnO3(x = 0 to 0.45), Adv. Appl. Ceram., 109(2010), No. 7, p. 426. doi: 10.1179/174367510X12722693956239
      [30]
      M. Zhou, X.M. Lu, X.Y. Xu, et al., Room temperature multiferroic behavior and magnetoelectric coupling in (K,Na)NbO3-based ceramics, Ceram. Int., 44(2018), No. 12, p. 14169. doi: 10.1016/j.ceramint.2018.05.019
      [31]
      A. Kumar, J.N. Baker, P.C. Bowes, et al., Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics, Nat. Mater., 20(2021), No. 1, p. 62. doi: 10.1038/s41563-020-0794-5
      [32]
      B. Zhang, D. Lu, Z. Wang, et al., Highly efficient photocatalytic hydrogen production performance for 2D/0D g-C3N4/Zn0.5Cd0.5S with g-C3N4 as a transport medium for photogenerated charge carriers, J. Electrochem. Soc., 169(2022), No. 4, art. No. 046512. doi: 10.1149/1945-7111/ac6452
      [33]
      X.E. Ning, A.Z. Hao, Y.L. Cao, N. Lv, and D.Z. Jia, Boosting piezocatalytic performance of Ag decorated ZnO by piezo-electrochemical synergistic coupling strategy, Appl. Surf. Sci., 566(2021), art. No. 150730. doi: 10.1016/j.apsusc.2021.150730

    Catalog


    • /

      返回文章
      返回