留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(12)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  752
  • HTML全文浏览量:  301
  • PDF下载量:  54
  • 被引次数: 0
Saida Shaik, Zhiyuan Chen, Preeti Prakash Sahoo,  and Chenna Rao Borra, Kinetics of solid-state reduction of chromite overburden, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2347-2355. https://doi.org/10.1007/s12613-023-2681-y
Cite this article as:
Saida Shaik, Zhiyuan Chen, Preeti Prakash Sahoo,  and Chenna Rao Borra, Kinetics of solid-state reduction of chromite overburden, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2347-2355. https://doi.org/10.1007/s12613-023-2681-y
引用本文 PDF XML SpringerLink
研究论文

铬铁矿表土的固相还原动力学


  • 通讯作者:

    and Chenna Rao Borra    E-mail: chenna.borra@metal.iitkgp.ac.in

  • 随着高品位天然铁矿石资源的迅速枯竭和日常生活中对钢铁需求的增加,对低品位铁矿石的需求正在上升。因此,如何有效利用低品位铁矿石一直是冶金工作者重点研究的方向。然而,低品位矿石的直接冶炼会产生的大量渣,消耗大量的能源。一般可以通过先直接还原,然后进行磁选和熔炼的方式来避免这个问题。铬铁矿表土(COB)是铬铁矿选矿过程中产生的矿山废弃物,主要成分为铁、铬、镍(<1wt%),是一种值得利用的低品位铁矿石。本文采用热分析方法对铬铁矿表土制备的自还原球团的固态还原等温和非等温动力学进行了深入研究。结果表明,在900 ~ 1100C 的温度范围内,球团的还原遵循一级自催化反应控制机制。还原反应的自催化性质是由于COB中镍的存在。由动力学结果得到的表观活化能表明,COB与碳之间的固相反应是铁还原的速率决定步骤。
  • Research Article

    Kinetics of solid-state reduction of chromite overburden

    + Author Affiliations
    • The demand for alternative low-grade iron ores is on the rise due to the rapid depletion of high-grade natural iron ore resources and the increased need for steel usage in daily life. However, the use of low-grade iron ores is a constant clinical task for industry metallurgists. Direct smelting of low-grade ores consumes a substantial amount of energy due to the large volume of slag generated. This condition can be avoided by direct reduction followed by magnetic separation (to separate the high amount of gangue or refractory and metal parts) and smelting. Chromite overburden (COB) is a mine waste generated in chromite ore processing, and it mainly consists of iron, chromium, and nickel (<1wt%). In the present work, the isothermal and non-isothermal kinetics of the solid-state reduction of self-reduced pellets prepared using low-grade iron ore (COB) were thoroughly investigated via thermal analysis. The results showed that the reduction of pellets followed a first-order autocatalytic reaction control mechanism in the temperature range of 900–1100°C. The autocatalytic nature of the reduction reaction was due to the presence of nickel in the COB. The apparent activation energy obtained from the kinetics results showed that the solid-state reactions between COB and carbon were the rate-determining step in iron oxide reduction.
    • loading
    • [1]
      S. Biswas, S. Samanta, R. Dey, S. Mukherjee, and P.C. Banerjee, Microbial leaching of chromite overburden from sukinda mines, Orissa, India using Aspergillus niger, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 705. doi: 10.1007/s12613-013-0787-3
      [2]
      X.R. Zhang, G. Li, J. Wu, N. Xiong, and X.J. Quan, Leaching of valuable elements from the waste chromite ore processing residue: A kinetic analysis, ACS Omega, 5(2020), No. 31, p. 19633. doi: 10.1021/acsomega.0c02194
      [3]
      T.G. Wang, M.L. He, and Q. Pan, A new method for the treatment of chromite ore processing residues, J. Hazard. Mater., 149(2007), No. 2, p. 440. doi: 10.1016/j.jhazmat.2007.04.009
      [4]
      S.K. Behera, S.K. Panda, N. Pradhan, L.B. Sukla, and B.K. Mishra, Extraction of nickel by microbial reduction of lateritic chromite overburden of Sukinda, India, Bioresour. Technol., 125(2012), p. 17. doi: 10.1016/j.biortech.2012.08.076
      [5]
      G.U. Kapure, C.B. Rao, V.D. Tathavadkar, and R. Sen, Direct reduction of low grade chromite overburden for recovery of metals, Ironmaking Steelmaking, 38(2011), No. 8, p. 590. doi: 10.1179/1743281211Y.0000000028
      [6]
      Y. Cao, Y.S. Sun, P. Gao, Y.X. Han, and Y.J. Li, Mechanism for suspension magnetization roasting of iron ore using straw-type biomass reductant, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1075. doi: 10.1016/j.ijmst.2021.09.008
      [7]
      Z.K. Liang, L.Y. Yi, Z.C. Huang, B.Y. Huang, and H.T. Han, A novel and green metallurgical technique of highly efficient iron recovery from refractory low-grade iron ores, ACS Sustainable Chem. Eng., 7(2019), No. 22, p. 18726. doi: 10.1021/acssuschemeng.9b05423
      [8]
      P. Gupta, A.K. Bhandary, M.G. Chaudhuri, S. Mukherjee, and R. Dey, Kinetic studies on the reduction of iron oxides in low-grade chromite ore by coke fines for its beneficiation, Arab. J. Sci. Eng., 43(2018), No. 11, p. 6143. doi: 10.1007/s13369-018-3324-x
      [9]
      M.I. Nasr, A.A. Omar, M.H. Khedr, and A.A. El-Geassy, Effect of nickel oxide doping on the kinetics and mechanism of iron oxide reduction, ISIJ Int., 35(1995), No. 9, p. 1043. doi: 10.2355/isijinternational.35.1043
      [10]
      D.W. Yu and D. Paktunc, Kinetics and mechanisms of the carbothermic reduction of chromite in the presence of nickel, J. Therm. Anal. Calorim., 132(2018), No. 1, p. 143. doi: 10.1007/s10973-017-6936-6
      [11]
      R. G. Reddy, R. B. Inturi, and M. V. Klein, Low temperature reduction of chromite ores with carbon, [in] EPD Congress Proceedings Sessions and Symposium, Warrendale, 1998, p. 697.
      [12]
      D. Chakraborty, S. Ranganathan, and S.N. Sinha, Investigations on the carbothermic reduction of chromite ores, Metall. Mater. Trans. B, 36(2005), No. 4, p. 437. doi: 10.1007/s11663-005-0034-z
      [13]
      N.S. Sundar Murti and V. Seshadri, Kinetics of reduction of synthetic chromite with carbon, ISIJ Int., 22(1982), No. 12, p. 925. doi: 10.2355/isijinternational1966.22.925
      [14]
      J.K. Wright, K.M. Bowling, and A.L. Morrison, Reduction of hematite pellets with carbonized coal in a static bed, ISIJ Int., 21(1981), No. 3, p. 149. doi: 10.2355/isijinternational1966.21.149
      [15]
      S. Saida, S. Chakravaty, R.N. Sahu, R. Biswas, and K. Chakravarty, Laboratory-scale tests for the utilization of high ash non-coking coal in coke-making process, Trans. Indian Inst. Met., 73(2020), No. 5, p. 1257. doi: 10.1007/s12666-020-01974-0
      [16]
      S. Shaik, S. Chakravarty, P.R. Mishra, R.N. Sahu, and K. Chakravarty, Caking ability tests for coal blends in process to utilize the Indian origin coals, Trans. Indian Inst. Met., 72(2019), No. 12, p. 3129. doi: 10.1007/s12666-019-01778-x
      [17]
      K.L. Bhaskar and B. Bhoi, Iron and nickel enrichment in low grade chromite overburden to produce ferronickel alloys, Trans. Indian Inst. Met., 74(2021), No. 6, p. 1321. doi: 10.1007/s12666-020-02176-4
      [18]
      C.W. Bale, P. Chartrand, S.A. Degterov, et al., FactSage thermochemical software and databases, Calphad, 26(2002), No. 2, p. 189. doi: 10.1016/S0364-5916(02)00035-4
      [19]
      X.M. Lv, W. Lv, Z.X. You, X.W. Lv, and C.G. Bai, Non-isothermal kinetics study on carbothermic reduction of nickel laterite ore, Powder Technol., 340(2018), p. 495. doi: 10.1016/j.powtec.2018.09.061
      [20]
      P.K. Weissenborn, J.G. Dunn, and L.J. Warren, Quantitative thermogravimetric analysis of haematite, goethite and kaolinite in Western Australian iron ores, Thermochim. Acta, 239(1994), p. 147. doi: 10.1016/0040-6031(94)87063-2
      [21]
      E. Donskoi, D.L.S. McElwain, and L.J. Wibberley, Estimation and modeling of parameters for direct reduction in iron ore/coal composites: Part II. Kinetic parameters, Metall. Mater. Trans. B, 34(2003), No. 2, p. 255. doi: 10.1007/s11663-003-0012-2
      [22]
      Y. Man, J.X. Feng, Y.M. Chen, and J.Z. Zhou, Mass loss and direct reduction characteristics of iron ore-coal composite pellets, J. Iron Steel Res. Int., 21(2014), No. 12, p. 1090. doi: 10.1016/S1006-706X(14)60188-6
      [23]
      R.F. Wei, D.Q. Cang, L.L. Zhang, and Y.Y. Bai, Staged reaction kinetics and characteristics of iron oxide direct reduction by carbon, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1025. doi: 10.1007/s12613-015-1164-1
      [24]
      J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
      [25]
      Z.Y. Chen, C. Zeilstra, J. Van Der Stel, J. Sietsma, and Y.X. Yang, Thermal decomposition reaction kinetics of hematite ore, ISIJ Int., 60(2020), No. 1, p. 65. doi: 10.2355/isijinternational.ISIJINT-2019-129
      [26]
      S. Ali, Y. Iqbal, I. Khan, et al., Hydrometallurgical leaching and kinetic modeling of low-grade manganese ore with banana peel in sulfuric acid, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 193. doi: 10.1007/s12613-020-2069-1
      [27]
      N. Birkner and A. Navrotsky, Thermodynamics of manganese oxides: Effects of particle size and hydration on oxidation-reduction equilibria among hausmannite, bixbyite, and pyrolusite, Am. Mineral., 97(2012), No. 8-9, p. 1291. doi: 10.2138/am.2012.3982
      [28]
      P. Gao, G.F. Li, X.T. Gu, and Y.X. Han, Reduction kinetics and microscopic properties transformation of boron-bearing iron concentrate–carbon-mixed pellets, Miner. Process. Extr. Metall. Rev., 41(2020), No. 3, p. 162. doi: 10.1080/08827508.2019.1598403
      [29]
      M. Kumar and S.K. Patel, Assessment of reduction behavior of hematite iron ore pellets in coal fines for application in sponge ironmaking, Miner. Process. Extr. Metall. Rev., 30(2009), No. 3, p. 240. doi: 10.1080/08827500802498215
      [30]
      H.U. Ross, The fundamental aspects of iron ore reduction, [in] Symposium on Science and Technology of Sponge Iron and its Conversion to Steel, Jamshedpur, 1973, p. 134.

    Catalog


    • /

      返回文章
      返回