Cite this article as: |
Baoshan Xie, Huan Ma, Chuanchang Li, and Jian Chen, Enhanced properties of stone coal-based composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 206-215. https://doi.org/10.1007/s12613-023-2682-x |
李传常 E-mail: chuanchangli@126.com
Supplementary Information-s12613-023-2682-x.docx |
[1] |
Our World in Data, 2021 Annual Percentage Change in Low-Carbon Energy Generation [2022-01-05]. https://ourworldindata.org/grapher/annual-percentage-change-low-carbon.
|
[2] |
C.C. Li, M.F. Wang, Z.S. Chen, and J. Chen, Enhanced thermal conductivity and photo-to-thermal performance of diatomite-based composite phase change materials for thermal energy storage, J. Energy Storage, 34(2021), art. No. 102171. doi: 10.1016/j.est.2020.102171
|
[3] |
B. Xiang, X.L. Cao, Y.P. Yuan, et al., A novel hybrid energy system combined with solar-road and soil-regenerator: Sensitivity analysis and optimization, Renewable Energy, 129(2018), p. 419. doi: 10.1016/j.renene.2018.06.027
|
[4] |
X.J. Yang, L.L. Sun, Y.P. Yuan, X.D. Zhao, and X.L. Cao, Experimental investigation on performance comparison of PV/T-PCM system and PV/T system, Renewable Energy, 119(2018), p. 152. doi: 10.1016/j.renene.2017.11.094
|
[5] |
T.T. Wang, C.P. Li, X.S. Xie, et al., Anode materials for aqueous zinc ion batteries: Mechanisms, properties, and perspectives, ACS Nano, 14(2020), No. 12, p. 16321. doi: 10.1021/acsnano.0c07041
|
[6] |
A.D. Kamble, V.K. Saxena, P.D. Chavan, and V.A. Mendhe, Co-gasification of coal and biomass an emerging clean energy technology: Status and prospects of development in Indian context, Int. J. Min. Sci. Technol., 29(2019), No. 2, p. 171. doi: 10.1016/j.ijmst.2018.03.011
|
[7] |
B. Yilmaz, B. Yüksel, G. Orhan, D. Aydin, and Z. Utlu, Synthesis and characterization of salt-impregnated anodic aluminum oxide composites for low-grade heat storage, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 112. doi: 10.1007/s12613-019-1890-x
|
[8] |
R.M. Wang, Z.Y. Gao, W.R. Wang, Y. Xue, and D.Y. Fu, Dynamic characteristics of the planetary gear train excited by time-varying meshing stiffness in the wind turbine, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1104. doi: 10.1007/s12613-018-1661-0
|
[9] |
K.S. Reddy, V. Mudgal, and T.K. Mallick, Review of latent heat thermal energy storage for improved material stability and effective load management, J. Energy Storage, 15(2018), p. 205. doi: 10.1016/j.est.2017.11.005
|
[10] |
X.B. Zhao, C.C. Li, K.H. Bai, B.S. Xie, J. Chen, and Q.X. Liu, Multiple structure graphite stabilized stearic acid as composite phase change materials for thermal energy storage, Int. J. Min. Sci. Technol., 32(2022), No. 6, p. 1419. doi: 10.1016/j.ijmst.2022.10.003
|
[11] |
C.C. Tseng, R.L. Sikorski, R. Viskanta, and M.Y. Chen, Effect of foam properties on heat transfer in high temperature open-cell foam inserts, J. Am. Ceram. Soc., 95(2012), No. 6, p. 2015. doi: 10.1111/j.1551-2916.2012.05177.x
|
[12] |
S.Y. Liu and H.M. Yang, Stearic acid hybridizing coal-series kaolin composite phase change material for thermal energy storage, Appl. Clay Sci., 101(2014), p. 277. doi: 10.1016/j.clay.2014.09.002
|
[13] |
Y. He, X. Zhang, and Y.J. Zhang, Preparation technology of phase change perlite and performance research of phase change and temperature control mortar, Energy Build., 85(2014), p. 506. doi: 10.1016/j.enbuild.2014.09.023
|
[14] |
H.L. Zhang, J. Baeyens, G. Cáceres, J. Degrève, and Y.Q. Lv, Thermal energy storage: Recent developments and practical aspects, Prog. Energy Combust. Sci., 53(2016), p. 1. doi: 10.1016/j.pecs.2015.10.003
|
[15] |
Y.H. Chen, L.M. Jiang, Y. Fang, et al., Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material, Sol. Energy Mater. Sol. Cells, 200(2019), art. No. 109989. doi: 10.1016/j.solmat.2019.109989
|
[16] |
J.L. Zeng, Y.H. Chen, L. Shu, et al., Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 178(2018), p. 84. doi: 10.1016/j.solmat.2018.01.012
|
[17] |
G.Y. Fang, H. Li, L. Cao, and F. Shan, Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage, Mater. Chem. Phys., 137(2012), No. 2, p. 558. doi: 10.1016/j.matchemphys.2012.09.058
|
[18] |
X. Jin, M.A. Medina, and X.S. Zhang, On the importance of the location of PCMs in building walls for enhanced thermal performance, Appl. Energy, 106(2013), p. 72. doi: 10.1016/j.apenergy.2012.12.079
|
[19] |
A. Sarı and A. Biçer, Preparation and thermal energy storage properties of building material-based composites as novel form-stable PCMs, Energy Build., 51(2012), p. 73. doi: 10.1016/j.enbuild.2012.04.010
|
[20] |
D. Zhou, C.Y. Zhao, and Y. Tian, Review on thermal energy storage with phase change materials (PCMs) in building applications, Appl. Energy, 92(2012), p. 593. doi: 10.1016/j.apenergy.2011.08.025
|
[21] |
Y. Zhou, S.C. Wang, J.Q. Peng, et al., Liquid thermo-responsive smart window derived from hydrogel, Joule, 4(2020), No. 11, p. 2458. doi: 10.1016/j.joule.2020.09.001
|
[22] |
C.C. Li, J. Ouyang, and H.M. Yang, Novel sensible thermal storage material from natural minerals, Phys. Chem. Miner., 40(2013), No. 9, p. 681. doi: 10.1007/s00269-013-0603-7
|
[23] |
D. Feldman, D. Banu, and D. Hawes, Low chain esters of stearic acid as phase change materials for thermal energy storage in buildings, Sol. Energy Mater. Sol. Cells, 36(1995), No. 3, p. 311. doi: 10.1016/0927-0248(94)00186-3
|
[24] |
B.S. Xie, C.C. Li, B. Zhang, L.X. Yang, G.Y. Xiao, and J. Chen, Evaluation of stearic acid/coconut shell charcoal composite phase change thermal energy storage materials for tankless solar water heater, Energy Built Environ., 1(2020), No. 2, p. 187. doi: 10.1016/j.enbenv.2019.08.003
|
[25] |
D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
|
[26] |
A. Arteconi, N.J. Hewitt, and F. Polonara, State of the art of thermal storage for demand-side management, Appl. Energy, 93(2012), p. 371. doi: 10.1016/j.apenergy.2011.12.045
|
[27] |
B.M. Li, D. Shu, R.F. Wang, et al., Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage, Renewable Energy, 145(2020), p. 84. doi: 10.1016/j.renene.2019.05.118
|
[28] |
K.R. Arun, M. Srinivas, C.A. Saleel, and S. Jayaraj, Influence of the location of discrete macro-encapsulated thermal energy storage on the performance of a double pass solar plate collector system, Renewable Energy, 146(2020), p. 675. doi: 10.1016/j.renene.2019.07.036
|
[29] |
X. Zeng, F. Wang, H.F. Zhang, L.J. Cui, J. Yu, and G.W. Xu, Extraction of vanadium from stone coal by roasting in a fluidized bed reactor, Fuel, 142(2015), p. 180. doi: 10.1016/j.fuel.2014.10.068
|
[30] |
C.C. Li, B.S. Xie, J. Chen, Z.X. He, Z.S. Chen, and Y. Long, Emerging mineral-coupled composite phase change materials for thermal energy storage, Energy Convers. Manag., 183(2019), p. 633. doi: 10.1016/j.enconman.2019.01.021
|
[31] |
D. Yang, F. Peng, H.R. Zhang, et al., Preparation of palygorskite paraffin nanocomposite suitable for thermal energy storage, Appl. Clay Sci., 126(2016), p. 190. doi: 10.1016/j.clay.2016.03.014
|
[32] |
X.G. Zhang, R.L. Wen, Z.H. Huang, et al., Enhancement of thermal conductivity by the introduction of carbon nanotubes as a filler in paraffin/expanded perlite form-stable phase-change materials, Energy Build., 149(2017), p. 463. doi: 10.1016/j.enbuild.2017.05.037
|
[33] |
A.H. Alkhazaleh, Preparation and characterization of isopropyl palmitate/expanded perlite and isopropyl palmitate/nanoclay composites as form-stable thermal energy storage materials for buildings, J. Energy Storage, 32(2020), art. No. 101679. doi: 10.1016/j.est.2020.101679
|
[34] |
C.C. Li, M.F. Wang, B.S. Xie, H. Ma, and J. Chen, Enhanced properties of diatomite-based composite phase change materials for thermal energy storage, Renewable Energy, 147(2020), p. 265. doi: 10.1016/j.renene.2019.09.001
|
[35] |
W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
|
[36] |
M. Diaz-Somoano and M.R. Martinez-Tarazona, Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas, Environ. Sci. Technol., 38(2004), No. 3, p. 899. doi: 10.1021/es034344b
|
[37] |
C.C. Li, H. Ma, B.S. Xie, et al., A comparison of mineralogical and thermal storage characteristics for two types of stone coal, Minerals, 9(2019), No. 10, art. No. 594. doi: 10.3390/min9100594
|
[38] |
R.L. Wen, X.G. Zhang, Z.H. Huang, et al., Preparation and thermal properties of fatty acid/diatomite form-stable composite phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 178(2018), p. 273. doi: 10.1016/j.solmat.2018.01.032
|
[39] |
D.S. He, Y. Chen, P. Xiang, Z.J. Yu, and J.H. Potgieter, Study on the pre-treatment of oxidized zinc ore prior to flotation, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 117. doi: 10.1007/s12613-018-1554-2
|
[40] |
C.C. Li, B. Zhang, and Q.X. Liu, N-eicosane/expanded graphite as composite phase change materials for electro-driven thermal energy storage, J. Energy Storage, 29(2020), art. No. 101339. doi: 10.1016/j.est.2020.101339
|
[41] |
B.S. Xie, C.C. Li, and Y.L. He, Advanced electro-heat conversion properties of microcrystalline graphite-based composite phase change material with the three-dimensional framework, J. Energy Storage, 59(2023), art. No. 106367. doi: 10.1016/j.est.2022.106367
|
[42] |
J. Liu, Y.M. Zhang, J. Huang, T. Liu, Y.Z. Yuan, and X.B. Huang, Influence of mechanical activation on mineral properties and process of acid leaching from stone coal, Chin. J. Rare Met., 38(2014), No. 1, p. 115.
|
[43] |
G.Y. Fang, H. Li, Z. Chen, and X. Liu, Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials, Energy, 35(2010), No. 12, p. 4622. doi: 10.1016/j.energy.2010.09.046
|
[44] |
Y.P. Yuan, T.Y. Li, N. Zhang, X.L. Cao, and X.J. Yang, Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application, J. Therm. Anal. Calorim., 124(2016), No. 2, p. 881. doi: 10.1007/s10973-015-5173-0
|
[45] |
C.C. Li, B.S. Xie, D.L. Chen, et al., Ultrathin graphite sheets stabilized stearic acid as a composite phase change material for thermal energy storage, Energy, 166(2019), p. 246. doi: 10.1016/j.energy.2018.10.082
|
[46] |
C.C. Li, B. Zhang, B.S. Xie, et al., Stearic acid/expanded graphite as a composite phase change thermal energy storage material for tankless solar water heater, Sustain. Cities Soc., 44(2019), p. 458. doi: 10.1016/j.scs.2018.10.041
|
[47] |
A. Sarı and A. Biçer, Thermal energy storage properties and thermal reliability of some fatty acid esters/building material composites as novel form-stable PCMs, Sol. Energy Mater. Sol. Cells, 101(2012), p. 114. doi: 10.1016/j.solmat.2012.02.026
|
[48] |
A. Sarı, A. Karaipekli, and C. Alkan, Preparation, characterization and thermal properties of lauric acid/expanded perlite as novel form-stable composite phase change material, Chem. Eng. J., 155(2009), No. 3, p. 899. doi: 10.1016/j.cej.2009.09.005
|
[49] |
Z.M. Sun, Y.Z. Zhang, S.L. Zheng, Y. Park, and R.L. Frost, Preparation and thermal energy storage properties of paraffin/calcined diatomite composites as form-stable phase change materials, Thermochim. Acta, 558(2013), p. 16. doi: 10.1016/j.tca.2013.02.005
|
[50] |
A. Sarı and A. Karaipekli, Preparation, thermal properties and thermal reliability of capric acid/expanded perlite composite for thermal energy storage, Mater. Chem. Phys., 109(2008), No. 2-3, p. 459. doi: 10.1016/j.matchemphys.2007.12.016
|