Cite this article as:

Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp.138-145. https://dx.doi.org/10.1007/s12613-023-2687-5
Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou, and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp.138-145. https://dx.doi.org/10.1007/s12613-023-2687-5
引用本文 PDF XML SpringerLink

极端温度下GH4738镍基高温合金的竞争氧化行为

摘要: GH4738因其优异的抗蠕变性和高温耐腐蚀性被广泛应用于发动机热端部件。然而,高推重比对镍基高温合金的高温性能提出了新挑战。本文通过等温和非等温氧化实验研究了GH4738在极端温度下的氧化行为。借助热重分析仪,观测样品氧化增重现象并绘制增重曲线。借助电子探针、扫描电子显微镜、能谱、X射线衍射仪等检测仪器对样品表面氧化膜的形貌、组成和氧化膜截面的元素分布进行探究。研究结果表明,由于合金元素的竞争性扩散,氧化层分为最外侧的多孔氧化层(OOL)、内侧相对致密的氧化层(IOL)和内部氧化区(IOZ)。氧化层相成分的变化取决于温度和时间。过高的温度会导致IOL/IOZ界面形成大量空隙。在1200°C时,IOL中Cr-rich氧化层的连续性被破坏,致使氧化膜发生剥落。氧化时间的延长导致Al-rich氧化物颗粒的尺寸随着IOZ的加深而增大。基于此,讨论了GH4738的氧化动力学,采用RPP模型描述和预测了GH4738在900–1100°C下的氧化行为,可为GH4738的高温应用提供实验基础和理论依据。

 

Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature

Abstract: A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200°C, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding, the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900–1100°C was predicted.

 

/

返回文章
返回