留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  728
  • HTML全文浏览量:  278
  • PDF下载量:  55
  • 被引次数: 0
Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou,  and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 138-145. https://doi.org/10.1007/s12613-023-2687-5
Cite this article as:
Hui Xu, Shufeng Yang, Enhui Wang, Yunsong Liu, Chunyu Guo, Xinmei Hou,  and Yanling Zhang, Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 138-145. https://doi.org/10.1007/s12613-023-2687-5
引用本文 PDF XML SpringerLink
研究论文

极端温度下GH4738镍基高温合金的竞争氧化行为


  • 通讯作者:

    杨树峰    E-mail: yangshufeng@ustb.edu.cn

    王恩会    E-mail: wangenhui@ustb.edu.cn

文章亮点

  • (1) 系统研究了极端温度对GH4738氧化行为的影响。
  • (2) 合金元素的竞争扩散行为对氧化层的组成有很大影响。
  • (3) 采用RPP模型描述和预测GH4738在900–1100°C的氧化行为。
  • GH4738因其优异的抗蠕变性和高温耐腐蚀性被广泛应用于发动机热端部件。然而,高推重比对镍基高温合金的高温性能提出了新挑战。本文通过等温和非等温氧化实验研究了GH4738在极端温度下的氧化行为。借助热重分析仪,观测样品氧化增重现象并绘制增重曲线。借助电子探针、扫描电子显微镜、能谱、X射线衍射仪等检测仪器对样品表面氧化膜的形貌、组成和氧化膜截面的元素分布进行探究。研究结果表明,由于合金元素的竞争性扩散,氧化层分为最外侧的多孔氧化层(OOL)、内侧相对致密的氧化层(IOL)和内部氧化区(IOZ)。氧化层相成分的变化取决于温度和时间。过高的温度会导致IOL/IOZ界面形成大量空隙。在1200°C时,IOL中Cr-rich氧化层的连续性被破坏,致使氧化膜发生剥落。氧化时间的延长导致Al-rich氧化物颗粒的尺寸随着IOZ的加深而增大。基于此,讨论了GH4738的氧化动力学,采用RPP模型描述和预测了GH4738在900–1100°C下的氧化行为,可为GH4738的高温应用提供实验基础和理论依据。
  • Research Article

    Competitive oxidation behavior of Ni-based superalloy GH4738 at extreme temperature

    + Author Affiliations
    • A high thrust-to-weight ratio poses challenges to the high-temperature performance of Ni-based superalloys. The oxidation behavior of GH4738 at extreme temperatures has been investigated by isothermal and non-isothermal experiments. As a result of the competitive diffusion of alloying elements, the oxide scale included an outermost porous oxide layer (OOL), an inner relatively dense oxide layer (IOL), and an internal oxide zone (IOZ), depending on the temperature and time. A high temperature led to the formation of large voids at the IOL/IOZ interface. At 1200°C, the continuity of the Cr-rich oxide layer in the IOL was destroyed, and thus, spallation occurred. Extension of oxidation time contributed to the size of Al-rich oxide particles with the increase in the IOZ. Based on this finding, the oxidation kinetics of GH4738 was discussed, and the corresponding oxidation behavior at 900–1100°C was predicted.
    • loading
    • [1]
      W.B. Ma, H.Y. Luo, and X.G. Yang, The effects of grain size and twins density on high temperature oxidation behavior of nickel-based superalloy GH738, Materials, 13(2020), No. 18, art. No. 4166. doi: 10.3390/ma13184166
      [2]
      V.S.K.G. Kelekanjeri and R.A. Gerhardt, Characterization of microstructural fluctuations in Waspaloy exposed to 760°C for times up to 2500 h, Electrochim. Acta, 51(2006), No. 8-9, p. 1873. doi: 10.1016/j.electacta.2005.02.099
      [3]
      J. Parkin and S. Birosca, Crystallographic orientation influence on slip system activation and deformation mechanisms in Waspaloy during in situ mechanical loading, J. Alloys Compd., 865(2021), art. No. 158548. doi: 10.1016/j.jallcom.2020.158548
      [4]
      G. Stein-Brzozowska, D.M. Flórez, J. Maier, and G. Scheffknecht, Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures, Fuel, 108(2013), p. 521. doi: 10.1016/j.fuel.2012.11.081
      [5]
      L. Wang, G. Yang, T. Lei, S.B. Yin, and L. Wang, Hot deformation behavior of GH738 for A-USC turbine blades, J. Iron Steel Res. Int., 22(2015), No. 11, p. 1043. doi: 10.1016/S1006-706X(15)30110-2
      [6]
      M. Li, P. Wang, Y.Q. Yang, et al., Oxidation behavior of a nickel-based single crystal superalloy at 1100°C under different oxygen concentration, J. Mater. Sci., 57(2022), No. 5, p. 3822. doi: 10.1007/s10853-022-06885-7
      [7]
      L. Zheng, M.C. Zhang, R. Chellali, and J.X. Dong, Investigations on the growing, cracking and spalling of oxides scales of powder metallurgy Rene95 nickel-based superalloy, Appl. Surf. Sci., 257(2011), No. 23, p. 9762. doi: 10.1016/j.apsusc.2011.06.005
      [8]
      D. Kim, C. Jang, and W.S. Ryu, Oxidation characteristics and oxide layer evolution of alloy 617 and Haynes 230 at 900°C and 1100°C, Oxid. Met., 71(2009), No. 5-6, p. 271. doi: 10.1007/s11085-009-9142-5
      [9]
      H.Q. Pei, Z.X. Wen, and Z.F. Yue, Long-term oxidation behavior and mechanism of DD6 Ni-based single crystal superalloy at 1050°C and 1100°C in air, J. Alloys Compd., 704(2017), p. 218. doi: 10.1016/j.jallcom.2017.02.031
      [10]
      J. Wang, H. Xue, and Y. Wang, Oxidation behavior of Ni-based superalloy GH738 in static air between 800 and 1000°C, Rare Met., 40(2021), No. 3, p. 616. doi: 10.1007/s12598-020-01513-2
      [11]
      J.H. Chen, P.M. Rogers, and J.A. Little, Oxidation behavior of several chromia-forming commercial nickel-base superalloys, Oxid. Met., 47(1997), No. 5-6, p. 381. doi: 10.1007/BF02134783
      [12]
      X.P. Zhuang, Y. Tan, X.G. You, et al., High temperature oxidation behavior and mechanism of a new Ni–Co-based superalloy, Vacuum, 189(2021), art. No. 110219. doi: 10.1016/j.vacuum.2021.110219
      [13]
      J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
      [14]
      K. Rehman, N.C. Sheng, Z.R. Sang, et al., Comparative study of the reactive elements effects on oxidation behavior of a Ni-based superalloy, Vacuum, 191(2021), art. No. 110382. doi: 10.1016/j.vacuum.2021.110382
      [15]
      E. Schmucker, C. Petitjean, L. Martinelli, P.J. Panteix, S.B. Lagha, and M. Vilasi, Oxidation of Ni–Cr alloy at intermediate oxygen pressures. I. Diffusion mechanisms through the oxide layer, Corros. Sci., 111(2016), p. 474. doi: 10.1016/j.corsci.2016.05.025
      [16]
      J.F. Jiang, G.F. Xiao, Y. Wang, and Y.Z. Liu, High temperature oxidation behavior of the wrought Ni-based superalloy GH4037 in the solid and semi-solid state, J. Alloys Compd., 784(2019), p. 394. doi: 10.1016/j.jallcom.2019.01.093
      [17]
      P. Berthod, J.P K. Gomis, and G. Medjahdi, Oxidation behavior and structure stability at 1250°C of chromium-rich TaC-containing cast alloys based on nickel and cobalt, Metall. Mater. Trans. A, 51(2020), No. 8, p. 4168. doi: 10.1007/s11661-020-05828-8
      [18]
      F.A. Pérez-González, N.F. Garza-Montes-de Oca, and R. Colás, High temperature oxidation of the Haynes 282© nickel-based superalloy, Oxid. Met., 82(2014), No. 3, p. 145.
      [19]
      J.D. Cao, J.S. Zhang, R.F. Chen, Y.X. Ye, and Y.Q. Hua, High temperature oxidation behavior of Ni-based superalloy GH202, Mater. Charact., 118(2016), p. 122. doi: 10.1016/j.matchar.2016.05.013
      [20]
      F.H. Latief, K. Kakehi, and Y. Tashiro, Oxidation behavior characteristics of an aluminized Ni-based single crystal superalloy CM186LC between 900°C and 1100°C in air, J. Ind. Eng. Chem., 19(2013), No. 6, p. 1926. doi: 10.1016/j.jiec.2013.02.039
      [21]
      F.H. Latief, K. Kakehi, X.T. Fu, and Y. Tashiro, Isothermal oxidation behavior characteristics of a second generation Ni-base single crystal superalloy in air at 1000 and 1100°C, Int. J. Electrochem. Sci., 7(2012), No. 9, p. 8369. doi: 10.1016/S1452-3981(23)18000-X
      [22]
      B. Albert, R. Völkl, and U. Glatzel, High-temperature oxidation behavior of two nickel-based superalloys produced by metal injection molding for aero engine applications, Metall. Mater. Trans. A, 45(2014), No. 10, p. 4561. doi: 10.1007/s11661-014-2391-1
      [23]
      R.F. Tylecote and W.K. Appleby, Some factors influencing the adherence of oxides on metals, Mater. Corros., 23(1972), No. 10, p. 855. doi: 10.1002/maco.19720231002
      [24]
      T. Sanviemvongsak, D. Monceau, C. Desgranges, and B. Macquaire, Intergranular oxidation of Ni-base alloy 718 with a focus on additive manufacturing, Corros. Sci., 170(2020), art. No. 108684. doi: 10.1016/j.corsci.2020.108684
      [25]
      D.J. Young, High Temperature Oxidation and Corrosion of Metals, 2nd ed., Elsevier, Amsterdam, 2016, p. 31.
      [26]
      L. Zheng, M.C. Zhang, and J.X. Dong, Oxidation behavior and mechanism of powder metallurgy Rene95 nickel based superalloy between 800 and 1000°C, Appl. Surf. Sci., 256(2010), No. 24, p. 7510. doi: 10.1016/j.apsusc.2010.05.098
      [27]
      C. Desgranges, F. Lequien, E. Aublant, M. Nastar, and D. Monceau, Depletion and voids formation in the substrate during high temperature oxidation of Ni–Cr alloys, Oxid. Met., 79(2013), No. 1, p. 93.
      [28]
      D.L. Douglass, A critique of internal oxidation in alloys during the post-wagner era, Oxid. Met., 44(1995), No. 1, p. 81.
      [29]
      N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
      [30]
      J. Litz, A. Rahmel, M. Schorr, and J. Weiss, Scale formation on the Ni-base superalloys IN 939 and IN 738 LC, Oxid. Met., 32(1989), No. 3, p. 167.
      [31]
      A. Atkinson, M.R. Levy, S. Roche, and R.A. Rudkin, Defect properties of Ti-doped Cr2O3, Solid State Ionics, 177(2006), No. 19-25, p. 1767. doi: 10.1016/j.ssi.2005.11.015
      [32]
      J.W. Teng, X.J. Gong, B.B. Yang, S. Yu, J.T. Liu, and Y.P. Li, Influence of Ti addition on oxidation behavior of Ni–Cr–W-based superalloys, Corros. Sci., 193(2021), art. No. 109882.
      [33]
      S. Cruchley, H.E. Evans, M.P. Taylor, M.C. Hardy, and S. Stekovic, Chromia layer growth on a Ni-based superalloy: Sub-parabolic kinetics and the role of titanium, Corros. Sci., 75(2013), p. 58. doi: 10.1016/j.corsci.2013.05.016
      [34]
      B. Chattopadhyay and G.C. Wood, The transient oxidation of alloys, Oxid. Met., 2(1970), No. 4, p. 373. doi: 10.1007/BF00604477
      [35]
      Z.Y. Zhu, Y.F. Cai, Y.J. Gong, G.P. Shen, Y.G. Tu, and G.F. Zhang, Isothermal oxidation behavior and mechanism of a nickel-based superalloy at 1000°C, Int. J. Miner. Metall. Mater., 24(2017), No. 7, p. 776. doi: 10.1007/s12613-017-1461-y
      [36]
      M.T. Lapington, D.J. Crudden, R.C. Reed, M.P. Moody, and P.A.J. Bagot, Characterization of oxidation mechanisms in a family of polycrystalline chromia-forming nickel-base superalloys, Acta Mater., 206(2021), art. No. 116626. doi: 10.1016/j.actamat.2021.116626
      [37]
      C.Y. Guo, E.H. Wang, S.Z. Wang, et al., Oxidation mechanism of MAX phases (Ti3AlC2 powders) with and without Sn doping, Corros. Sci., 180(2021), art. No. 109197. doi: 10.1016/j.corsci.2020.109197
      [38]
      C.Y. Guo, X.J. Duan, Z. Fang, et al., A new strategy for long-term complex oxidation of MAX phases: Database generation and oxidation kinetic model establishment with aid of machine learning, Acta Mater., 241(2022), art. No. 118378. doi: 10.1016/j.actamat.2022.118378
      [39]
      E.H. Wang, X.M. Hou, Y.F. Chen, et al., Progress in cognition of gas–solid interface reaction for non-oxide ceramics at high temperature, Crit. Rev. Solid State Mater. Sci., 46(2021), No. 3, p. 218. doi: 10.1080/10408436.2020.1713047
      [40]
      E.H. Wang, J. Cheng, J.W. Ma, et al., Effect of temperature on the initial oxidation behavior and kinetics of 5Cr ferritic steel in air, Metall. Mater. Trans. A, 49(2018), No. 10, p. 5169. doi: 10.1007/s11661-018-4781-2

    Catalog


    • /

      返回文章
      返回