留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1387
  • HTML全文浏览量:  405
  • PDF下载量:  91
  • 被引次数: 0
Wan Nor Anasuhah Wan Yusoff, Nurul Akidah Baharuddin, Mahendra Rao Somalu, Andanastuti Muchtar, Nigel P. Brandon,  and Huiqing Fan, Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1933-1956. https://doi.org/10.1007/s12613-023-2694-6
Cite this article as:
Wan Nor Anasuhah Wan Yusoff, Nurul Akidah Baharuddin, Mahendra Rao Somalu, Andanastuti Muchtar, Nigel P. Brandon,  and Huiqing Fan, Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1933-1956. https://doi.org/10.1007/s12613-023-2694-6
引用本文 PDF XML SpringerLink
特约综述

开发对称固体氧化物燃料电池电极材料的最新进展和影响参数


  • 通讯作者:

    Nurul Akidah Baharuddin    E-mail: akidah@ukm.edu.my

  • 对称固体氧化物燃料电池(SOFC)是一种相对较新的 SOFC 技术,本文对对称固体氧化物燃料电池中可能使用的电极材料进行了详尽的概述。为此,本文全面回顾了用于 S-SOFC 的电极材料的最新进展和进步,讨论了材料的选择和选择过程中遇到的挑战。我们将回顾开发纳米/微结构电极所涉及的相关因素。纳米复合材料,如非钴和锂化材料,只是目前正在研究的电极类型中的一小部分。此外,所生产材料的相结构和微观结构在很大程度上受到合成过程的影响。本文讨论了材料的可能性和困难。为了获得理想的微观结构特征,本文重点讨论了最新的合成技术或现有工艺的更好迭代。本文分析的最关键部分是制造 S-SOFC 时与制造相关的风险以及材料带来的挑战。本文还为电极材料研究人员的战略设计提供了重要而有用的建议。
  • Invited Review

    Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells

    + Author Affiliations
    • This article delivers a robust overview of potential electrode materials for use in symmetrical solid oxide fuel cells (S-SOFCs), a relatively new SOFC technology. To this end, this article provides a comprehensive review of recent advances and progress in electrode materials for S-SOFC, discussing both the selection of materials and the challenges that come with making that choice. This article discussed the relevant factors involved in developing electrodes with nano/microstructure. Nanocomposites, e.g., non-cobalt and lithiated materials, are only a few of the electrode types now being researched. Furthermore, the phase structure and microstructure of the produced materials are heavily influenced by the synthesis procedure. Insights into the possibilities and difficulties of the material are discussed. To achieve the desired microstructural features, this article focuses on a synthesis technique that is either the most recent or a better iteration of an existing process. The portion of this analysis that addresses the risks associated with manufacturing and the challenges posed by materials when fabricating S-SOFCs is the most critical. This article also provides important and useful recommendations for the strategic design of electrode materials researchers.
    • loading
    • [1]
      E. Fabbri, D. Pergolesi, and E. Traversa, Materials challenges toward proton-conducting oxide fuel cells: A critical review, Chem. Soc. Rev., 39(2010), No. 11, p. 4355. doi: 10.1039/b902343g
      [2]
      N. Rajalakshmi, R. Balaji, and S. Ramakrishnan, Recent developments in hydrogen fuel cells: Strengths and weaknesses, [in] Sustainable Fuel Technologies Handbook, Elsevier, Amsterdam, 2021, p. 431.
      [3]
      X. Fan, M. Tebyetekerwa, Y. Wu, R.R. Gaddam, and X.S. Zhao, Origin of excellent charge storage properties of defective tin disulphide in magnesium/lithium-ion hybrid batteries, Nano Micro Lett., 14(2022), No. 1, art. No. 177. doi: 10.1007/s40820-022-00914-5
      [4]
      J.A. Delborne, D. Hasala, A. Wigner, and A. Kinchy, Dueling metaphors, fueling futures: “Bridge fuel” visions of coal and natural gas in the United States, Energy Res. Soc. Sci., 61(2020), art. No. 101350. doi: 10.1016/j.erss.2019.101350
      [5]
      Y.J. Yang, Y.H. Yu, J. Li, et al., Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction, Nano Micro Lett., 13(2021), No. 1, art. No. 160. doi: 10.1007/s40820-021-00679-3
      [6]
      Z.W. Cao, R. Momen, S.S. Tao, et al., Metal-organic framework materials for electrochemical supercapacitors, Nano Micro Lett., 14(2022), No. 1, art. No. 181. doi: 10.1007/s40820-022-00910-9
      [7]
      C. H. Wendel, P. Kazempoor, and R. J. Braun, Novel electrical energy storage system based on reversible solid oxide cells : System design and operating conditions, J. Power Sources, 276(2015), p. 133. doi: 10.1016/j.jpowsour.2014.10.205
      [8]
      X.Y. Huang, L.H. Li, S.F. Zhao, et al., MOF-like 3D graphene-based catalytic membrane fabricated by one-step laser scribing for robust water purification and green energy production, Nano Micro Lett., 14(2022), No. 1, art. No. 174. doi: 10.1007/s40820-022-00923-4
      [9]
      X.Y. Wang, X.M. Li, H.Q. Fan, and L.T. Ma, Solid electrolyte interface in Zn-based battery systems, Nano Micro Lett., 14(2022), No. 1, art. No. 205. doi: 10.1007/s40820-022-00939-w
      [10]
      A. Boudghene Stambouli and E. Traversa, Fuel cells, an alternative to standard sources of energy, Renew. Sustain. Energy Rev., 6(2002), No. 3, p. 295. doi: 10.1016/S1364-0321(01)00015-6
      [11]
      T. Wilberforce, A. Alaswad, A. Palumbo, M. Dassisti, and A.G. Olabi, Advances in stationary and portable fuel cell applications, Int. J. Hydrogen Energy, 41(2016), No. 37, p. 16509. doi: 10.1016/j.ijhydene.2016.02.057
      [12]
      H.J. Ying, P.F. Huang, Z. Zhang, et al., Freestanding and flexible interfacial layer enables bottom-up Zn deposition toward dendrite-free aqueous Zn-ion batteries, Nano Micro Lett., 14(2022), No. 1, art. No. 180. doi: 10.1007/s40820-022-00921-6
      [13]
      B. Zhang, Y.Y. Feng, and W. Feng, Azobenzene-based solar thermal fuels: A review, Nano Micro Lett., 14(2022), art. No. 138
      [14]
      J. Romdhane and H. Louahlia-Gualous, Energy assessment of PEMFC based MCCHP with absorption chiller for small scale French residential application, Int. J. Hydrogen Energy, 43(2018), No. 42, p. 19661. doi: 10.1016/j.ijhydene.2018.08.132
      [15]
      S.S.C. Chuang and L. Zhang, Perovskites and related mixed oxides for SOFC applications, [in] Perovskites and Related Mixed Oxides, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2015, p. 863.
      [16]
      G.S. Ma, D. Zhang, P. Guo, et al., Phase orientation improved the corrosion resistance and conductivity of Cr2AlC coatings for metal bipolar plates, J. Mater. Sci. Technol., 105(2022), p. 36. doi: 10.1016/j.jmst.2021.06.069
      [17]
      S.W. Lee, B. Lee, C. Baik, T.Y. Kim, and C. Pak, Multifunctional Ir-Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells, J. Mater. Sci. Technol., 60(2021), p. 105. doi: 10.1016/j.jmst.2020.05.020
      [18]
      H.A. Tahini, X. Tan, W. Zhou, Z.H. Zhu, U. Schwingenschlögl, and S.C. Smith, Sc and Nb dopants in SrCoO3 modulate electronic and vacancy structures for improved water splitting and SOFC cathodes, Energy Storage Mater., 9(2017), p. 229. doi: 10.1016/j.ensm.2017.01.005
      [19]
      R. Pelosato, G. Cordaro, D. Stucchi, C. Cristiani, and G. Dotelli, Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review, J. Power Sources, 298(2015), p. 46. doi: 10.1016/j.jpowsour.2015.08.034
      [20]
      A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation—A review, Renew. Sustain. Energy Rev., 20(2013), p. 430. doi: 10.1016/j.rser.2012.11.031
      [21]
      H.B. Li, N. Xu, Y.H. Fang, H. Fan, Z. Lei, and M.F. Han, Syngas production via coal char-CO2 fluidized bed gasification and the effect on the performance of LSCFN// LSGM// LSCFN solid oxide fuel cell, J. Mater. Sci. Technol., 34(2018), No. 2, p. 403. doi: 10.1016/j.jmst.2017.06.001
      [22]
      Y.P. Wang, S.H. Liu, H.Y. Zhang, et al., Structured La0.6Sr0.4Co0.2Fe0.8O3−δ cathode with large-scale vertical cracks by atmospheric laminar plasma spraying for IT-SOFCs, J. Alloys Compd., 825(2020), art. No. 153865. doi: 10.1016/j.jallcom.2020.153865
      [23]
      M. Mogensen and K. Kammer, Conversion of hydrocarbons in solid oxide fuel cells, Annu. Rev. Mater. Res., 33(2003), No. 1, p. 321. doi: 10.1146/annurev.matsci.33.022802.092713
      [24]
      M.D. Fernandes, V. Bistritzki, R.Z. Domingues, T. Matencio, M. Rapini, and R.D. Sinisterra, Solid oxide fuel cell technology paths: National innovation system contributions from Japan and the United States, Renew. Sustain. Energy Rev., 127(2020), p. 109879. doi: 10.1016/j.rser.2020.109879
      [25]
      K. Huang and S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology: A critical review, J. Power Sources, 237(2013), p. 84. doi: 10.1016/j.jpowsour.2013.03.001
      [26]
      M.S. Javed, N. Shaheen, A. Idrees, C.G. Hu, and R. Raza, Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 42(2017), No. 15, p. 10416. doi: 10.1016/j.ijhydene.2017.02.045
      [27]
      V. Sarıboğa and M.A. Faruk Öksüzömer, Cu−CeO2 anodes for solid oxide fuel cells: Determination of infiltration characteristics, J. Alloys Compd., 688(2016), p. 323. doi: 10.1016/j.jallcom.2016.07.217
      [28]
      H. Aslannejad, L. Barelli, A. Babaie, and S. Bozorgmehri, Effect of air addition to methane on performance stability and coking over NiO−YSZ anodes of SOFC, Appl. Energy, 177(2016), p. 179. doi: 10.1016/j.apenergy.2016.05.127
      [29]
      W.X. Kao, M.C. Lee, Y.C. Chang, T.N. Lin, C.H. Wang, and J.C. Chang, Fabrication and evaluation of the electrochemical performance of the anode-supported solid oxide fuel cell with the composite cathode of La0.8Sr0.2MnO3−δ-Gadolinia-doped ceria oxide/La0.8Sr0.2MnO3−δ, J. Power Sources, 195(2010), No. 19, p. 6468. doi: 10.1016/j.jpowsour.2010.04.057
      [30]
      A.A. Jais, S.A. Ali, M. Anwar, et al., Performance of Ni/10Sc1CeSZ anode synthesized by glycine nitrate process assisted by microwave heating in a solid oxide fuel cell fueled with hydrogen or methane, J. Solid State Electrochem., 24(2020), p. 711. doi: 10.1007/s10008-020-04512-6
      [31]
      K. Venkataramana, C. Madhuri, C. Madhusudan, Y.S. Reddy, G. Bhikshamaiah, and C.V. Reddy, Investigation on La3+ and Dy3+ co-doped ceria ceramics with an optimized average atomic number of dopants for electrolytes in IT-SOFCs, Ceram. Int., 44(2018), No. 6, p. 6300. doi: 10.1016/j.ceramint.2018.01.020
      [32]
      X.Z. Peng, Y.F. Tian, Y. Liu, et al., A double perovskite decorated carbon-tolerant redox electrode for symmetrical SOFC, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14461. doi: 10.1016/j.ijhydene.2020.03.151
      [33]
      L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, and P.R. Slater, Investigation of PO43− oxyanion-doping on the properties of CaFe0.4Ti0.6O3−δ for potential application as symmetrical electrodes for SOFCs, J. Alloys Compd., 835(2020), art. No. 155437. doi: 10.1016/j.jallcom.2020.155437
      [34]
      B.B. Niu, C.L. Lu, W.D. Yi, et al.,In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells, Appl. Catal., B, 270(2020), art. No. 118842. doi: 10.1016/j.apcatb.2020.118842
      [35]
      W.W. Fan, Z. Sun, Y. Bai, K. Wu, and Y.H. Cheng, Highly stable and efficient perovskite ferrite electrode for symmetrical solid oxide fuel cells, ACS Appl. Mater. Interfaces, 11(2019), No. 26, p. 23168. doi: 10.1021/acsami.9b04286
      [36]
      S.H. Lee, K. Lee, Y.H. Jang, and J. Bae, Fabrication of solid oxide fuel cells (SOFCs) by solvent-controlled co-tape casting technique, Int. J. Hydrogen Energy, 42(2017), No. 3, p. 1648. doi: 10.1016/j.ijhydene.2016.07.066
      [37]
      M.R. Somalu, A. Muchtar, W.R.W. Daud, and N.P. Brandon, Screen-printing inks for the fabrication of solid oxide fuel cell films: A review, Renew. Sustain. Energy Rev., 75(2017), p. 426. doi: 10.1016/j.rser.2016.11.008
      [38]
      L. Bernadet, C. Moncasi, M. Torrell, and A. Tarancón, High-performing electrolyte-supported symmetrical solid oxide electrolysis cells operating under steam electrolysis and co-electrolysis modes, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14208. doi: 10.1016/j.ijhydene.2020.03.144
      [39]
      F. Zurlo, I. Natali Sora, V. Felice, et al., Copper-doped lanthanum ferrites for symmetric SOFCs, Acta Mater., 112(2016), p. 77. doi: 10.1016/j.actamat.2016.04.015
      [40]
      J. C. Ruiz-Morales, D. Marrero-López, J. Canales-Vázquez, and J. T. S. Irvine, Symmetric and reversible solid oxide fuel cells, RSC Adv., 1(2011), No. 8, p. 1403. doi: 10.1039/c1ra00284h
      [41]
      C. Su, W. Wang, M. Liu, M. O. Tadé, and Z. Shao, Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes, Adv. Energy Mater., 5(2015), No. 14, p. 1500188. doi: 10.1002/aenm.201500188
      [42]
      X. Chen, J.T. Wang, N. Yu, et al., A robust direct-propane solid oxide fuel cell with hierarchically oriented full ceramic anode consisting with in-situ exsolved metallic nano-catalysts, J. Membr. Sci., 677(2023), art. No. 121637.
      [43]
      H.D. Cai, L.L. Zhang, J.S. Xu, et al., Cobalt-free La0.5Sr0.5Fe0.9Mo0.1O3–δ electrode for symmetrical SOFC running on H2 and CO fuels, Electrochim. Acta, 320(2019), art. No. 134642.
      [44]
      Y.R. Yang, S.S. Li, Z.B. Yang, et al., One step synthesis of Sr2Fe1.3Co0.2Mo0.5O6–δ-Gd0.1Ce0.9O2–δ for symmetrical solid oxide fuel cells, J. Electrochem. Soc., 167(2020), No. 8, art. No. 084503. doi: 10.1149/1945-7111/ab8927
      [45]
      Y.Z. Lu, N. Mushtaq, M.A.K. Yousaf Shah, et al., Ba0.5Sr0.5Fe0.8Sb0.2O3−δ-m0.2Ce0.8O2−δ bulk heterostructure composite: A cobalt free Oxygen Reduction Electrocatalyst for low-temperature SOFCs, Int. J. Hydrogen Energy, 47(2022), No. 90, p. 38348. doi: 10.1016/j.ijhydene.2022.09.009
      [46]
      Y.Z. Lu, J.J. Li, L.G. Ma, Z.H. Lu, L. Yu, and Y.X. Cai, The development of semiconductor-ionic conductor composite electrolytes for fuel cells with symmetrical electrodes, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9835. doi: 10.1016/j.ijhydene.2020.05.240
      [47]
      Y.X. Cao, Z.W. Zhu, Y.J. Zhao, W. Zhao, Z.L. Wei, and T. Liu, Development of tungsten stabilized SrFe0.8W0.2O3−δ material as novel symmetrical electrode for solid oxide fuel cells, J. Power Sources, 455(2020), art. No. 227951. doi: 10.1016/j.jpowsour.2020.227951
      [48]
      H.Z. Lv, Q. Pan, Y. Song, X.X. Liu, and T.Y. Liu, A review on nano-/microstructured materials constructed by electrochemical technologies for supercapacitors, Nano Micro Lett., 12(2020), No. 1, p. 1. doi: 10.1007/s40820-019-0337-2
      [49]
      J.V. Reis, T.C.P. Pereira, T.H.A. Teles, et al., Synthesis of CeNb3O9 perovskite by pechini method, Mater. Lett., 227(2018), p. 261. doi: 10.1016/j.matlet.2018.05.093
      [50]
      Y.X. Chen, S.L. Luo, J. Leng, et al., Exploring the synthesis conditions and formation mechanisms of Li-rich layered oxides via solid-state method, J. Alloys Compd., 854(2021), art. No. 157204. doi: 10.1016/j.jallcom.2020.157204
      [51]
      S.Q. Zhao, Z.Q. Guo, K. Yan, et al., Towards high-energy-density lithium-ion batteries: Strategies for developing high-capacity lithium-rich cathode materials, Energy Storage Mater., 34(2021), p. 716. doi: 10.1016/j.ensm.2020.11.008
      [52]
      Y.L. Gao, Z.H. Pan, J.G. Sun, Z.L. Liu, and J. Wang, High-energy batteries: Beyond lithium-ion and their long road to commercialisation, Nanomicro Lett., 14(2022), No. 1, art. No. 94.
      [53]
      B. Zhu, R. Raza, H.Y. Qin, and L.D. Fan, Single-component and three-component fuel cells, J. Power Sources, 196(2011), No. 15, p. 6362. doi: 10.1016/j.jpowsour.2011.03.078
      [54]
      H.Q. Hu, Q.Z. Lin, Z.G. Zhu, B. Zhu, and X.R. Liu, Fabrication of electrolyte-free fuel cell with Mg0.4Zn0.6O/Ce0.8Sm0.2O2−δ-Li0.3Ni0.6Cu0.07Sr0.03O2−δ layer, J. Power Sources, 248(2014), p. 577. doi: 10.1016/j.jpowsour.2013.09.095
      [55]
      K. Lin, X.F. Xu, X.Y. Qin, et al., Commercially viable hybrid Li-ion/metal batteries with high energy density realized by symbiotic anode and prelithiated cathode, Nano Micro Lett., 14(2022), art. No. 149.
      [56]
      P. Mukherjee, N.V. Faenza, N. Pereira, et al., Surface structural and chemical evolution of layered LiNi0.8Co0.15Al0.05O2 (NCA) under high voltage and elevated temperature conditions, Chem. Mater., 30(2018), No. 23, p. 8431. doi: 10.1021/acs.chemmater.7b05305
      [57]
      T.P. Gao, K.W. Wong, and K.M. Ng, High-quality LiNi0.8Co0.15Al0.05O2 cathode with excellent structural stability: Suppressed structural degradation and pore defects generation, Nano Energy, 73(2020), p. 104798. doi: 10.1016/j.nanoen.2020.104798
      [58]
      Y. Makimura, S.J. Zheng, Y. Ikuhara, and Y. Ukyo, Microstructural observation of LiNi0.8Co0.15Al0.05O2 after charge and discharge by scanning transmission electron microscopy, J. Electrochem. Soc., 159(2012), No. 7, p. A1070. doi: 10.1149/2.073207jes
      [59]
      A.S. Bagishev, D.V. Maslennikov, M.P. Popov, and A.P. Nemudry, A study of the influence of Li-containing additives in microtubular SOFC components based on Gd-doped ceria on the effectiveness of the co-firing method, Mater. Today, 25(2020), p. 464. doi: 10.1016/j.matpr.2019.12.178
      [60]
      J.J. Xu, Critical review on cathode-electrolyte interphase toward high-voltage cathodes for Li-ion batteries, Nano Micro Lett., 14(2022), art. No. 166
      [61]
      M.H. Yuan, W.J. Dong, L.L. Wei, et al., Stability study of SOFC using layered perovskite oxide La1.85Sr0.15CuO4 mixed with ionic conductor as membrane, Electrochim. Acta, 332(2020), art. No. 135487. doi: 10.1016/j.electacta.2019.135487
      [62]
      E. Thauer, G.S. Zakharova, S.A. Wegener, Q. Zhu, and R. Klingeler, Sol−gel synthesis of Li3VO4/C composites as anode materials for lithium-ion batteries, J. Alloys Compd., 853(2021), art. No. 157364. doi: 10.1016/j.jallcom.2020.157364
      [63]
      Y.X. Jiang, L.Y. Chai, D.H. Zhang, et al., Facet-controlled LiMn2O4/C as deionization electrode with enhanced stability and high desalination performance, Nano Micro Lett., 14(2022), No. 1, art. No. 176. doi: 10.1007/s40820-022-00897-3
      [64]
      D.L. Ma, Z.Y. Cao, and A.M. Hu, Si-based anode materials for Li-ion batteries: A mini review, Nano Micro Lett., 6(2014), No. 4, p. 347. doi: 10.1007/s40820-014-0008-2
      [65]
      A. U. Rehman, M.R. Li, R. Knibbe, M.S. Khan, W. Zhou, and Z.H. Zhu, Unveiling lithium roles in cobalt-free cathodes for efficient oxygen reduction reaction below 600°C, ChemElectroChem, 6(2019), No. 20, p. 5340. doi: 10.1002/celc.201901452
      [66]
      X.B. Zhang, G. Chen, Y. He, L.L. Zhang, D. Yang, and S.J. Geng, Effect of Li2CO3 and LiOH on the ionic conductivity of BaCe0.9Y0.1O3 electrolyte in SOFCs with a lithium compound electrode, Int. J. Hydrogen Energy, 46(2021), No. 15, p. 9948. doi: 10.1016/j.ijhydene.2020.04.192
      [67]
      Y. He, G. Chen, X.B. Zhang, et al., Mechanism for major improvement in SOFC electrolyte conductivity when using lithium compounds as anode, ACS Appl. Energy Mater., 3(2020), No. 5, p. 4134. doi: 10.1021/acsaem.0c00364
      [68]
      L.D. Fan and P.C. Su, Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2−/e) conducting cathode for low temperature proton conducting solid oxide fuel cells, J. Power Sources, 306(2016), p. 369. doi: 10.1016/j.jpowsour.2015.12.015
      [69]
      W.Y. Tan, L.D. Fan, R. Raza, M.A. Khan, and B. Zhu, Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte, Int. J. Hydrogen Energy, 38(2013), No. 1, p. 370. doi: 10.1016/j.ijhydene.2012.09.160
      [70]
      G. Chen, H.L. Liu, Y. He, et al., Electrochemical mechanisms of an advanced low-temperature fuel cell with a SrTiO3 electrolyte, J. Mater. Chem. A, 7(2019), No. 16, p. 9638. doi: 10.1039/C9TA00499H
      [71]
      W.W. Fan, Z. Sun, J.K. Wang, J. Zhou, K. Wu, and Y.H. Cheng, Evaluation of Sm0.95Ba0.05Fe0.95Ru0.05O3 as a potential cathode material for solid oxide fuel cells, RSC Adv., 6(2016), No. 41, p. 34564. doi: 10.1039/C6RA02251K
      [72]
      C.G. Moura, J.P. de F. Grilo, D.A. Macedo, M.R. Cesário, D.P. Fagg, and R.M. Nascimento, Cobalt-free perovskite Pr0.5Sr0.5Fe1−xCuxO3−δ (PSFC) as a cathode material for intermediate temperature solid oxide fuel cells, Mater. Chem. Phys., 180(2016), p. 256. doi: 10.1016/j.matchemphys.2016.06.005
      [73]
      X.B. Huang, J. Feng, H.R.S. Abdellatif, J. Zou, G. Zhang, and C.S. Ni, Electrochemical evaluation of double perovskite PrBaCo2−xMnxO5+δ (x = 0, 0.5, 1) as promising cathodes for IT-SOFCs, Int. J. Hydrogen Energy, 43(2018), No. 18, p. 8962. doi: 10.1016/j.ijhydene.2018.03.163
      [74]
      Y.B. He, F. Ning, Q.H. Yang, et al., Structural and thermal stabilities of layered Li(Ni1/3Co1/3Mn1/3)O2 materials in 18650 high power batteries, J. Power Sources, 196(2011), No. 23, p. 10322. doi: 10.1016/j.jpowsour.2011.08.042
      [75]
      X.Q. Liu, W.J. Dong, Y.Z. Tong, et al., Li effects on layer-structured oxide LixNi0.8Co0.15Al0.05O2−δ: Improving cell performance via on-line reaction, Electrochim. Acta, 295(2019), p. 325. doi: 10.1016/j.electacta.2018.10.160
      [76]
      K. Wang, D. Zheng, H.D. Cai, et al., Rational design of favourite lithium-ion cathode materials as electrodes for symmetrical solid oxide fuel cells, Ceram. Int., 47(2021), No. 21, p. 30536. doi: 10.1016/j.ceramint.2021.07.232
      [77]
      G.L. Wang, J.Z. Wu, S. Li, et al., Effect of the online reaction byproducts of LiNi0.8Co0.15Al0.05O2−δ electrodes on the performance of solid oxide fuel cells, Int. J. Hydrogen Energy, 47(2022), No. 79, p. 33850. doi: 10.1016/j.ijhydene.2022.07.243
      [78]
      X.F. Luo, X.Y. Wang, L. Liao, X.M. Wang, S. Gamboa, and P.J. Sebastian, Effects of synthesis conditions on the structural and electrochemical properties of layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via the hydroxide co-precipitation method LIB SCITECH, J. Power Sources, 161(2006), No. 1, p. 601. doi: 10.1016/j.jpowsour.2006.03.090
      [79]
      E.Y. Hu, Z. Jiang, L.D. Fan, et al., Junction and energy band on novel semiconductor-based fuel cells, iScience, 24(2021), No. 3, p. 102191. doi: 10.1016/j.isci.2021.102191
      [80]
      S.M. Baba, N. Ohguri, Y. Suzuki, and K. Murakami, Evaluation of a variable flow ejector for anode gas circulation in a 50-kW class SOFC, Int. J. Hydrogen Energy, 45(2020), No. 19, p. 11297. doi: 10.1016/j.ijhydene.2020.02.039
      [81]
      P. Li, Q.Y. Yang, H. Zhang, M.X. Yao, F. Yan, and D. Fu, Effect of Fe, Ni and Zn dopants in La0.9Sr0.1CoO3 on the electrochemical performance of single-component solid oxide fuel cell, Int. J. Hydrogen Energy, 45(2020), No. 20, p. 11802. doi: 10.1016/j.ijhydene.2020.02.116
      [82]
      D. Zheng, X.M. Zhou, Z.L. He, et al., LiNi-oxide simultaneously as electrolyte and symmetrical electrode for low-temperature solid oxide fuel cell, Int. J. Hydrogen Energy, 47(2022), No. 63, p. 27177. doi: 10.1016/j.ijhydene.2022.06.067
      [83]
      M.V. Sandoval, C. Cárdenas, E. Capoen, C. Pirovano, P. Roussel, and G.H. Gauthier, Performance of La0.5Sr1.5MnOδ Ruddlesden−Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part A. The oxygen reduction reaction, Electrochim. Acta, 304(2019), p. 415. doi: 10.1016/j.electacta.2019.03.037
      [84]
      G. Chen, Y. Gao, Y.F. Luo, and R.F. Guo, Effect of A site deficiency of LSM cathode on the electrochemical performance of SOFCs with stabilized zirconia electrolyte, Ceram. Int., 43(2017), No. 1, p. 1304. doi: 10.1016/j.ceramint.2016.10.082
      [85]
      J.K. Wang, J. Zhou, J.M. Yang, et al., Nanoscale architecture of (La0.6Sr1.4)0.95Mn0.9B0.1O4 (B=Co, Ni, Cu) Ruddlesden−Popper oxides as efficient and durable catalysts for symmetrical solid oxide fuel cells, Renew. Energy, 157(2020), p. 840. doi: 10.1016/j.renene.2020.05.014
      [86]
      J. Zhou, N. Wang, J.J. Cui, et al., Structural and electrochemical properties of B-site Ru-doped (La0.8Sr0.2)0.9Sc0.2Mn0.8O3–δ as symmetrical electrodes for reversible solid oxide cells, J. Alloys Compd., 792(2019), p. 1132. doi: 10.1016/j.jallcom.2019.04.103
      [87]
      S. Durán, N. Rangel, C. Silva, et al., Study of La4BaCu5−xMnxO13+δ materials as potential electrode for symmetrical-SOFC, Solid State Ionics, 341(2019), p. 115031. doi: 10.1016/j.ssi.2019.115031
      [88]
      W. Yusoff, N.W. Norman, A. Samat, M.R. Somalu, A. Muchtar, and N.A. Baharuddin, Fabrication process of cathode materials for solid oxide fuel cells, J. Adv. Res. Fluid Mech. Therm. Sci., 2(2018), No. 2, p. 153.
      [89]
      S. Paydar, M.H. Shariat, and S. Javadpour, Investigation on electrical conductivity of LSM/YSZ8, LSM/Ce0.84Y0.16O0.96 and LSM/Ce0.42Zr0.42Y0.16O0.96 composite cathodes of SOFCs, Int. J. Hydrogen Energy, 41(2016), No. 48, p. 23145. doi: 10.1016/j.ijhydene.2016.10.092
      [90]
      A. Kudryavtsev, S. Lavrov, A. Shestakova, L. Kulyuk, and E. Mishina, Second harmonic generation in nanoscale films of transition metal dichalcogenide: Accounting for multipath interference, AIP Adv., 6(2016), art. No. 095306. doi: 10.1063/1.4962764
      [91]
      L. Suescun, B. Dabrowski, J. Mais, et al., Oxygen ordered phases in LaxSr1–xMnOy (0≤x≤0.2, 2.5≤y≤3): An in situ neutron powder diffraction study, Chem. Mater., 20(2008), No. 4, p. 1636. doi: 10.1021/cm703139c
      [92]
      M.V. Sandoval, C. Pirovano, E. Capoen, et al., In-depth study of the Ruddlesden-Popper LaxSr2−xMnO3−δ family as possible electrode materials for symmetrical SOFC, Int. J. Hydrogen Energy, 42(2017), No. 34, art. No. 21930.
      [93]
      M. Al Daroukh, V.V. Vashook, H. Ullmann, F. Tietz, and I. Arual Raj, Oxides of the AMO3 and A2MO4-type: Structural stability, electrical conductivity and thermal expansion, Solid State Ionics, 158(2003), No. 1-2, p. 141. doi: 10.1016/S0167-2738(02)00773-7
      [94]
      E. Lay, G. Gauthier, and L. Dessemond, Preliminary studies of the new Ce-doped La/Sr chromo-manganite series as potential SOFC anode or SOEC cathode materials, Solid State Ionics, 189(2011), No. 1, p. 91. doi: 10.1016/j.ssi.2011.02.004
      [95]
      E. Gager, M. Frye, D.C. McCord, J. Scheffe, and J. Nino, Reticulated porous lanthanum strontium manganite structures for solar thermochemical hydrogen production, Int. J. Hydrogen Energy, 47(2022), No. 73, p. 31152. doi: 10.1016/j.ijhydene.2022.07.052
      [96]
      Z.K. Zhu, M. Sugimoto, U. Pal, S. Gopalan, and S. Basu, Multiple cycle chromium poisoning and in-situ electrochemical cleaning of LSM-based solid oxide fuel cell cathodes, J. Power Sources Adv., 6(2020), art. No. 100037. doi: 10.1016/j.powera.2020.100037
      [97]
      D. Garcés, A.L. Soldati, H. Troiani, A. Montenegro-Hernández, A. Caneiro, and L.V. Mogni, La/Ba-based cobaltites as IT-SOFC cathodes: A discussion about the effect of crystal structure and microstructure on the O2-reduction reaction, Electrochim. Acta, 215(2016), p. 637. doi: 10.1016/j.electacta.2016.08.132
      [98]
      J.S. Hardy, C.A. Coyle, J.F. Bonnett, et al., Evaluation of cation migration in lanthanum strontium cobalt ferrite solid oxide fuel cell cathodes via in-operando X-ray diffraction, J. Mater. Chem. A, 6(2018), No. 4, p. 1787. doi: 10.1039/C7TA06856E
      [99]
      N.A. Baharuddin, A. Muchtar, M.R. Somalu, and A.A. Samat, Thermal decomposition of cobalt free SrFe0.9Ti0.1O3+δ cathode for intermediate temperature solid oxide fuel cell, Procedia Eng., 148(2016), p. 72. doi: 10.1016/j.proeng.2016.06.502
      [100]
      F.F. Dong, Y.B. Chen, D.J. Chen, and Z.P. Shao, Surprisingly high activity for oxygen reduction reaction of selected oxides lacking long oxygen-ion diffusion paths at intermediate temperatures: A case study of cobalt-free BaFeO3−δ, ACS Appl. Mater. Interfaces, 6(2014), No. 14, p. 11180. doi: 10.1021/am502240m
      [101]
      G.M. Yang, J. Shen, Y.B. Chen, M.O. Tadé, and Z.P. Shao, Cobalt-free Ba0.5Sr0.5Fe0.8Cu0.1Ti0.1O3−δ as a bi-functional electrode material for solid oxide fuel cells, J. Power Sources, 298(2015), p. 184. doi: 10.1016/j.jpowsour.2015.08.064
      [102]
      W. Jung and H.L. Tuller, A new model describing solid oxide fuel cell cathode kinetics: Model thin film SrTi1-xFexO3-δ mixed conducting oxides-A case study, Adv. Energy Mater., 1(2011), No. 6, p. 1184. doi: 10.1002/aenm.201100164
      [103]
      J. Zamudio-García, L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, and D. Marrero-López, Symmetrical solid oxide fuel cells based on titanate nanocomposite electrodes, J. Eur. Ceram. Soc., 43(2023), No. 4, p. 1548. doi: 10.1016/j.jeurceramsoc.2022.11.059
      [104]
      X. Chen, C.C. Kou, X.J. Liao, et al., Plasma-sprayed lanthanum-doped strontium titanate as an interconnect for solid oxide fuel cells: Effects of powder size and process conditions, J. Alloys Compd., 876(2021), art. No. 160212. doi: 10.1016/j.jallcom.2021.160212
      [105]
      H. Miao, B. Chen, X. Wu, Q. Wang, P. Lin, J. Wang, C. Yang, H. Zhang, and J. Yuan, Optimizing strontium titanate anode in solid oxide fuel cells by ytterbium doping, Int. J. Hydrogen Energy, 44(2019), No. 26, p. 13728. doi: 10.1016/j.ijhydene.2019.03.111
      [106]
      R.P. Li, C. Zhang, J.H. Liu, J.W. Zhou, and L. Xu, A review on the electrical properties of doped SrTiO3 as anode materials for solid oxide fuel cells, Mater. Res. Express, 6(2019), No. 10, art. No. 102006. doi: 10.1088/2053-1591/ab4303
      [107]
      D. Dogu, S. Gunduz, K.E. Meyer, D.J. Deka, A.C. Co, and U.S. Ozkan, CO2 and H2O electrolysis using solid oxide electrolyzer cell (SOEC) with La and Cl-doped strontium titanate cathode, Catal. Lett., 149(2019), No. 7, p. 1743. doi: 10.1007/s10562-019-02786-8
      [108]
      M.A. Yatoo and S.J. Skinner, Ruddlesden-Popper phase materials for solid oxide fuel cell cathodes: A short review, Mater. Today, 56(2022), p. 3747. doi: 10.1016/j.matpr.2021.12.537
      [109]
      A. Ndubuisi, S. Abouali, K. Singh, and V. Thangadurai, Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes, J. Mater. Chem. A, 10(2022), No. 5, p. 2196. doi: 10.1039/D1TA08475E
      [110]
      Z.Y. Han, J.H. Bai, X. Chen, X.F. Zhu, and D.F. Zhou, Novel cobalt-free Pr2Ni1−xNbxO4 (x = 0, 0.05, 0.10, and 0.15) perovskite as the cathode material for IT-SOFC, Int. J. Hydrogen Energy, 46(2021), No. 21, p. 11894. doi: 10.1016/j.ijhydene.2021.01.045
      [111]
      N. Wu, W. Wang, Y.J. Zhong, G.M. Yang, J.F. Qu, and Z.P. Shao, Nickel-iron alloy nanoparticle-decorated K2NiF4-type oxide as an efficient and sulfur-tolerant anode for solid oxide fuel cells, ChemElectroChem, 4(2017), No. 9, p. 2378. doi: 10.1002/celc.201700211
      [112]
      Z.Q. Xu, Y.H. Li, Y.H. Wan, S.W. Zhang, and C.R. Xia, Nickel enriched Ruddlesden-Popper type lanthanum strontium manganite as electrode for symmetrical solid oxide fuel cell, J. Power Sources, 425(2019), p. 153. doi: 10.1016/j.jpowsour.2019.04.005
      [113]
      S.J. Zhou, Y. Yang, H. Chen, and Y.H. Ling, in situ exsolved Co−Fe nanoparticles on the Ruddlesden−Popper-type symmetric electrodes for intermediate temperature solid oxide fuel cells, Ceram. Int., 46(2020), No. 11, p. 18331. doi: 10.1016/j.ceramint.2020.05.057
      [114]
      L. Fu, J. Zhou, J. Yang, Z. Lian, J. Wang, Y. Cheng, and K. Wu., Exsolution of Cu nanoparticles in (LaSr)0.9Fe0.9Cu0.1O4 Ruddlesden–Popper oxide as symmetrical electrode for solid oxide cells, Appl. Surf. Sci., 511(2020), p. 145525. doi: 10.1016/j.apsusc.2020.145525
      [115]
      Y. Wang, X.C. Tang, S. Cao, X. Fang, Z.H. Rong, and X. Chen, A novel method to synthesis titanium dioxide(B)/Anatase composite oxides by solid-state chemical reaction routes for promoting Li+ insertion, Results Phys., 14(2019), art. No. 102451. doi: 10.1016/j.rinp.2019.102451
      [116]
      O.L. Pineda, Z.L. Moreno, P. Roussel, K. Świerczek, and G.H. Gauthier, Synthesis and preliminary study of the double perovskite NdBaMn2O5+δ as symmetric SOFC electrode material, Solid State Ionics, 288(2016), p. 61. doi: 10.1016/j.ssi.2016.01.022
      [117]
      N. Li, Z. Lü, B. Wei, et al., Characterization of GdBaCo2O5+δ cathode for IT-SOFCs, J. Alloys Compd., 454(2008), No. 1-2, p. 274. doi: 10.1016/j.jallcom.2006.12.017
      [118]
      D.J. Chen, R. Ran, K. Zhang, J. Wang, and Z.P. Shao, Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte, J. Power Sources, 188(2009), No. 1, p. 96. doi: 10.1016/j.jpowsour.2008.11.045
      [119]
      G. Kim, S. Wang, A.J. Jacobson, L. Reimus, P. Brodersen, and C.A. Mims, Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations, J. Mater. Chem., 17(2007), No. 24, p. 2500. doi: 10.1039/b618345j
      [120]
      I.A. Ditenberg, I.V. Smirnov, K.V. Grinyaev, D.A. Osipov, A.I. Gavrilov, and M.A. Korchagin, Morphology, structural-phase state and microhardness of a multicomponent non-equiatomic W−Ta−Mo−Nb−Zr−Cr−Ti powders mixture depending on the duration of ball milling, Adv. Powder Technol., 31(2020), No. 10, p. 4401. doi: 10.1016/j.apt.2020.09.016
      [121]
      A.V. Syugaev, K.A. Yazovskikh, A.A. Shakov, S.F. Lomayeva, and A.N. Maratkanova, Molecular transformations in interfaces and liquid media under wet ball milling of iron with N-phenylanthranilic acid, Colloids Surf. A, 608(2021), art. No. 125620. doi: 10.1016/j.colsurfa.2020.125620
      [122]
      H.B. Li, J. He, Q.Q. Sun, and S. Wang, Effect of the environment on the morphology of Ni powder during high-energy ball milling, Mater. Today Commun., 25(2020), art. No. 101288. doi: 10.1016/j.mtcomm.2020.101288
      [123]
      K. Ponhan, K. Tassenberg, D. Weston, K.G.M. Nicholls, and R. Thornton, Effect of SiC nanoparticle content and milling time on the microstructural characteristics and properties of Mg−SiC nanocomposites synthesized with powder metallurgy incorporating high-energy ball milling, Ceram. Int., 46(2020), No. 17, p. 26956. doi: 10.1016/j.ceramint.2020.07.173
      [124]
      M.Y. Gong, C.L. Liu, J. Gao, A.Z. Du, W.P. Tong, and C.Z. Liu, Magnetic and electromagnetic properties of Fe/Fe2–3N composites prepared by high-energy ball milling, J. Mater. Res. Technol., 9(2020), No. 4, p. 8646. doi: 10.1016/j.jmrt.2020.04.025
      [125]
      P. Sivakumar, R. Ishak, and V. Tricoli, Novel Pt–Ru nanoparticles formed by vapour deposition as efficient electrocatalyst for methanol oxidation: Part I. Preparation and physical characterization, Electrochim. Acta, 50(2005), No. 16-17, p. 3312. doi: 10.1016/j.electacta.2004.12.005
      [126]
      T. L. Simonenko, N. P. Simonenko, A. S. Mokrushin, et al., Microstructural, electrophysical and gas-sensing properties of CeO2–Y2O3 thin films obtained by the sol−gel process, Ceram. Int., 46(2020), No. 1, p. 121. doi: 10.1016/j.ceramint.2019.08.241
      [127]
      H. Laysandra, D. Triyono, H.L. Liu, and R.A. Rafsanjani, Systematic study of phase-formation and lattice structure of La0.9Sr0.1Fe1−xMoxO3 synthesized through the sol−gel method, Ceram. Int., 46(2020), No. 7, p. 9751. doi: 10.1016/j.ceramint.2019.12.244
      [128]
      A.A. Samat, W.N.A. Wan Yusoff, N.W. Norman, M.R. Somalu, and N. Osman, Powder and electrical properties of La0.6Sr0.4CoO3− δ cathode material prepared by a modified sol–gel method for solid oxide fuel cell application, Jurnal Kejuruteraan, 1(2018), No. 2, p. 49.
      [129]
      S.K. Badge and A.V. Deshpande, Study of dielectric and ferroelectric properties of Bismuth Titanate (Bi4Ti3O12) ceramic prepared by sol–gel synthesis and solid state reaction method with varying sintering temperature, Solid State Ionics, 334(2019), p. 21. doi: 10.1016/j.ssi.2019.01.028
      [130]
      D. Mateos, B. Valdez, J.R. Castillo, et al., Synthesis of high purity nickel oxide by a modified sol-gel method, Ceram. Int., 45(2019), No. 9, p. 11403. doi: 10.1016/j.ceramint.2019.03.005
      [131]
      E.M. Modan and A.G. Plăiașu, Advantages and disadvantages of chemical methods in the elaboration of nanomaterials, Ann. “Dunarea De Jos” Univ. Galati Fascicle IX Metall. Mater. Sci., 43(2020), No. 1, p. 53.
      [132]
      P.G. Jamkhande, N.W. Ghule, A.H. Bamer, and M.G. Kalaskar, Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications, J. Drug Deliv. Sci. Technol., 53(2019), art. No. 101174. doi: 10.1016/j.jddst.2019.101174
      [133]
      N.A. Baharuddin, A. Muchtar, and M.R. Somalu, Preparation of SrFe0.5Ti0.5O3−δ perovskite-structured ceramic using the glycine-nitrate combustion technique, Mater. Lett., 194(2017), p. 197. doi: 10.1016/j.matlet.2017.02.064
      [134]
      T.H.N.G. Amaraweera, D. Senarathna, and A. Wijayasinghe, Synthesis of Li (Ni1/3Mn1/3Co1/3)O2 by Glycine Nitrate combustion process, Ceylon J. Sci., 45(2016), No. 3, art. No. 21. doi: 10.4038/cjs.v45i3.7397
      [135]
      T. Feng, B.B. Niu, J.C. Liu, and T.M. He, Sr- and Mo-deficiency Sr1.95TiMo1−xO6−δ double perovskites as anodes for solid-oxide fuel cells using H2S-containing syngas, Int. J. Hydrogen Energy, 45(2020), No. 43, p. 23444. doi: 10.1016/j.ijhydene.2020.06.115
      [136]
      H.H. Zhao, F.Y. Wang, L.R. Cui, X.Z. Xu, X.J. Han, and Y.C. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: A review, Nano Micro Lett., 13(2021), No. 1, p. 1. doi: 10.1007/s40820-020-00525-y
      [137]
      S.A. Muhammed Ali, M. Anwar, M.R. Somalu, and A. Muchtar, Enhancement of the interfacial polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3−δ cathode by microwave-assisted combustion method, Ceram. Int., 43(2017), No. 5, p. 4647. doi: 10.1016/j.ceramint.2016.12.136
      [138]
      J.H. Xu, S.B. Wan, Y. Wang, et al., Enhancing performance of molybdenum doped strontium ferrite electrode by surface modification through Ni infiltration, Int. J. Hydrogen Energy, 46(2021), No. 18, p. 10876. doi: 10.1016/j.ijhydene.2020.12.185
      [139]
      S. Vafaeenezhad, N. K. Sandhu, A. R. Hanifi, T. H. Etsell, and P. Sarkar, Development of proton conducting fuel cells using nickel metal support, J. Power Sources, 435(2019), art. No. 226763. doi: 10.1016/j.jpowsour.2019.226763
      [140]
      P.P. Wu, Y.T. Tian, Z. Lü, X. Zhang, and L.L. Ding, Electrochemical performance of La0.65Sr0.35MnO3 oxygen electrode with alternately infiltrated Sm0.5Sr0.5CoO3−δ and Sm0.2Ce0.8O1.9 nanoparticles for reversible solid oxide cells, Int. J. Hydrogen Energy, 47(2022), No. 2, p. 747. doi: 10.1016/j.ijhydene.2021.10.069
      [141]
      Q.M. Liu, S.Z. Huang, and A.J. He, Composite ceramics thermal barrier coatings of yttria stabilized zirconia for aero-engines, J. Mater. Sci. Technol., 35(2019), No. 12, p. 2814. doi: 10.1016/j.jmst.2019.08.003
      [142]
      Y. Liu, X.Q. Han, Q. Huang, et al., Structural damage response of lanthanum and yttrium aluminate crystals to nuclear collisions and electronic excitation: Threshold assessment of irradiation damage, J. Mater. Sci. Technol., 90(2021), p. 95. doi: 10.1016/j.jmst.2021.02.029
      [143]
      T.Z. Wu, Y.Q. Zhao, R.R. Peng, and C.R. Xia, Nano-sized Sm0.5Sr0.5CoO3−δ as the cathode for solid oxide fuel cells with proton-conducting electrolytes of BaCe0.8Sm0.2O2.9, Electrochim. Acta, 54(2009), No. 21, p. 4888. doi: 10.1016/j.electacta.2009.04.013
      [144]
      S. Abdul, W. Yusoff, N. Baharuddin, M. Somalu, A. Muchtar, and N. Osman, Electrochemical performance of sol−gel derived La0.6S0.4CoO3−δ cathode material for proton-conducting fuel cell: A comparison between simple and advanced cell fabrication techniques, Process. Appl. Ceram., 12(2018), No. 3, p. 277. doi: 10.2298/PAC1803277A
      [145]
      L.M. Ding, L.X. Wang, D. Ding, S.H. Zhang, X.F. Ding, and G.L. Yuan, Promotion on electrochemical performance of a cation deficient SrCo0.7Nb0.1Fe0.2O3−δ perovskite cathode for intermediate-temperature solid oxide fuel cells, J. Power Sources, 354(2017), p. 26. doi: 10.1016/j.jpowsour.2017.04.009
      [146]
      X.J. Liu, D. Han, H. Wu, X. Meng, F.R. Zeng, and Z.L. Zhan, Mn1.5Co1.5O4−δ infiltrated yttria stabilized zirconia composite cathodes for intermediate-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 38(2013), No. 36, p. 16563. doi: 10.1016/j.ijhydene.2013.04.106
      [147]
      F. Bidrawn, G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, and R.J. Gorte, Efficient reduction of CO2 in a solid oxide electrolyzer, Electrochem. Solid State Lett., 11(2008), No. 9, p. 167. doi: 10.1149/1.2943664
      [148]
      X.L. Yue and J.T.S. Irvine, Alternative cathode material for CO2Reduction by high temperature solid oxide electrolysis cells, J. Electrochem. Soc., 159(2012), No. 8, p. F442. doi: 10.1149/2.040208jes
      [149]
      Y.Q. Yu, L.X. Yu, K. Shao, et al., BaZr0.1Co0.4Fe0.4Y0.1O3-SDC composite as quasi-symmetrical electrode for proton conducting solid oxide fuel cells, Ceram. Int., 46(2020), No. 8, p. 11811. doi: 10.1016/j.ceramint.2020.01.215
      [150]
      J. Xu, X.L. Zhou, L. Pan, M.X. Wu, and K.N. Sun, Oxide composite of La0.3Sr0.7Ti0.3Fe0.7O3−δ and CeO2 as an active fuel electrode for reversible solid oxide cells, J. Power Sources, 371(2017), p. 1. doi: 10.1016/j.jpowsour.2017.10.016
      [151]
      M.K. Hossain, R. Chanda, A. El-Denglawey, et al., Recent progress in Barium zirconate proton conductors for electrochemical hydrogen device applications: A review, Ceram. Int., 47(2021), No. 17, p. 23725. doi: 10.1016/j.ceramint.2021.05.167
      [152]
      H.F. Lv, L. Lin, X.M. Zhang, et al., Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6−δ via repeated redox manipulations for CO2 electrolysis, Nat. Commun., 12(2021), No. 1, art. No. 5665. doi: 10.1038/s41467-021-26001-8
      [153]
      G.S. Kim, B.Y. Lee, G. Accardo, H.C. Ham, J. Moon, and S.P. Yoon, Improved catalytic activity under internal reforming solid oxide fuel cell over new rhodium-doped perovskite catalyst, J. Power Sources, 423(2019), p. 305. doi: 10.1016/j.jpowsour.2019.03.082
      [154]
      R. Kannan, K. Singh, S. Gill, T. Fürstenhaupt, and V. Thangadurai, Chemically stable proton conducting doped BaCeO3–δ -No more fear to SOFC wastes, Sci. Rep., 3(2013), art. No. 2138. doi: 10.1038/srep02138
      [155]
      D.Q. Liu, Y.N. Dou, T. Xia, et al., B-site La, Ce, and Pr-doped Ba0.5Sr0.5Co0.7Fe0.3O3−δ perovskite cathodes for intermediate-temperature solid oxide fuel cells: Effectively promoted oxygen reduction activity and operating stability, J. Power Sources, 494(2021), art. No. 229778. doi: 10.1016/j.jpowsour.2021.229778
      [156]
      W.N.A.W. Yusoff, N.A. Baharuddin, M.R. Somalu, A. Muchtar, and A.A. Samat, A short review on selection of electrodes materials for symmetrical solid oxide fuel cell, IOP Conf. Ser.: Mater. Sci. Eng., 957(2020), No. 1, art. No. 012049. doi: 10.1088/1757-899X/957/1/012049
      [157]
      B. Hołówko, P. Błaszczak, M. Chlipała, et al., Structural and catalytic properties of ceria layers doped with transition metals for SOFCs fueled by biogas, Int. J. Hydrogen Energy, 45(2020), No. 23, p. 12982. doi: 10.1016/j.ijhydene.2020.02.144
      [158]
      M.H. Shen and P.P. Zhang, Progress and challenges of cathode contact layer for solid oxide fuel cell, Int. J. Hydrogen Energy, 45(2020), No. 58, p. 33876. doi: 10.1016/j.ijhydene.2020.09.147
      [159]
      M. V. Sandoval, C. Cardenas, E. Capoen, P. Roussel, C. Pirovano, and G. H. Gauthier, Performance of La0.5Sr1.5MnOδ Ruddlesden–Popper manganite as electrode material for symmetrical solid oxide fuel cells. Part B. the hydrogen oxidation reaction, Electrochim. Acta, 353(2020), art. No. 136494. doi: 10.1016/j.electacta.2020.136494
      [160]
      S. Molin, J. Karczewski, B. Kamecki, A. Mroziński, S.F. Wang, and P. Jasiński, Processing of Ce0.8Gd0.2O2–δ barrier layers for solid oxide cells: The effect of preparation method and thickness on the interdiffusion and electrochemical performance, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 5626. doi: 10.1016/j.jeurceramsoc.2020.06.006
      [161]
      D. Ramasamy, N. Nasani, D. Pukazhselvan, and D.P. Fagg, Increased performance by use of a mixed conducting buffer layer, terbia-doped ceria, for Nd2NiO4+δ SOFC/SOEC oxygen electrodes, Int. J. Hydrogen Energy, 44(2019), No. 59, p. 31466. doi: 10.1016/j.ijhydene.2019.10.008
      [162]
      X.Y. Chen, W.J. Ni, X.J. Du, et al., Electrochemical property of multi-layer anode supported solid oxide fuel cell fabricated through sequential tape-casting and co-firing, J. Mater. Sci. Technol., 35(2019), No. 4, p. 695. doi: 10.1016/j.jmst.2018.10.015
      [163]
      W.N.A. Wan Yusoff, N.N.M. Tahir, N.A. Baharuddin, M.R. Somalu, A. Muchtar, and L.J. Wei, Effects of roller speed on the structural and electrochemical properties of LiCo0.6Sr0.4O2 cathode for solid oxide fuel cell application, Sustain. Energy Technol. Assess., 56(2023), art. No. 103096. doi: 10.1016/j.seta.2023.103096
      [164]
      P. Jasinski, S. Molin, M. Gazda, V. Petrovsky, and H.U. Anderson, Applications of spin coating of polymer precursor and slurry suspensions for solid oxide fuel cell fabrication, J. Power Sources, 194(2009), No. 1, p. 10. doi: 10.1016/j.jpowsour.2008.12.054
      [165]
      M. Chen, J.L. Luo, K.T. Chuang, and A.R. Sanger, Fabrication and electrochemical properties of cathode-supported solid oxide fuel cells via slurry spin coating, Electrochim. Acta, 63(2012), p. 277. doi: 10.1016/j.electacta.2011.12.115
      [166]
      E. Lay, L. Dessemond, and G. Gauthier, Ba-substituted LSCM anodes for solid oxide fuel cells, J. Power Sources, 221(2013), p. 149. doi: 10.1016/j.jpowsour.2012.07.126
      [167]
      M.K. Rath, B.G. Ahn, B.H. Choi, M.J. Ji, and K.T. Lee, Effects of manganese substitution at the B-site of lanthanum-rich strontium titanate anodes on fuel cell performance and catalytic activity, Ceram. Int., 39(2013), No. 6, p. 6343. doi: 10.1016/j.ceramint.2013.01.060
      [168]
      J.C. Ruiz-Morales, J. Canales-Vázquez, B. Ballesteros-Pérez, et al., LSCM-(YSZ-CGO) composites as improved symmetrical electrodes for solid oxide fuel cells, J. Eur. Ceram. Soc., 27(2007), No. 13-15, p. 4223. doi: 10.1016/j.jeurceramsoc.2007.02.117
      [169]
      J. Lu, Y.M. Yin, J.C. Li, L. Xu, and Z.F. Ma, A cobalt-free electrode material La0.5Sr0.5Fe0.8Cu0.2O3−δ for symmetrical solid oxide fuel cells, Electrochem. Commun., 61(2015), p. 18. doi: 10.1016/j.elecom.2015.09.020
      [170]
      Y.F. Tian, W.J. Wang, Y. Liu, et al., Cobalt-free perovskite oxide La0.6Sr0.4Fe0.8Ni0.2O3–δ as active and robust oxygen electrode for reversible solid oxide cells, ACS Appl. Energy Mater., 2(2019), No. 5, p. 3297. doi: 10.1021/acsaem.9b00115
      [171]
      M.V. Sandoval, S. Durán, A. Prada, et al., Synthesis and preliminary study of NdxAE2−xMnOδ (AE: Ca, Sr) for symmetrical SOFC electrodes, Solid State Ion., 317(2018), p. 194. doi: 10.1016/j.ssi.2018.01.025
      [172]
      T.L. Zhu, D.E. Fowler, K.R. Poeppelmeier, M.F. Han, and S.A. Barnett, Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes, J. Electrochem. Soc., 163(2016), No. 8, p. F952. doi: 10.1149/2.1321608jes
      [173]
      C.H. Yang, Z.B. Yang, C. Jin, G.L. Xiao, F.L. Chen, and M.F. Han, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells, Adv. Mater., 24(2012), No. 11, p. 1439. doi: 10.1002/adma.201104852
      [174]
      T.H. Shin, Y. Okamoto, S. Ida, and T. Ishihara, Self-recovery of Pd nanoparticles that were dispersed over La(Sr)Fe(Mn)O3 for intelligent oxide anodes of solid-oxide fuel cells, Chem. Eur. J., 18(2012), No. 37, p. 11695. doi: 10.1002/chem.201200536
      [175]
      Y.M. Xu, Z.H. Lin, W. Wei, et al., Recent progress of electrode materials for flexible perovskite solar cells, Nano Micro Lett., 14(2022), art. No. 117
      [176]
      X.Y. Luo, Y. Yang, Y. Yang, et al., Reduced-temperature redox-stable LSM as a novel symmetrical electrode material for SOFCs, Electrochim. Acta, 260(2018), p. 121. doi: 10.1016/j.electacta.2017.11.071
      [177]
      W. He, J.C. Fan, H. Zhang, M.N. Chen, Z.M. Sun, and M. Ni, Zr doped BaFeO3−δ as a robust electrode for symmetrical solid oxide fuel cells, Int. J. Hydrogen Energy, 44(2019), No. 60, p. 32164. doi: 10.1016/j.ijhydene.2019.10.091
      [178]
      S. Wang, B. Wei, and Z. Lü, Electrochemical performance and distribution of relaxation times analysis of tungsten stabilized La0·5Sr0·5Fe0·9W0·1O3−δ electrode for symmetric solid oxide fuel cells, Int. J. Hydrogen Energy, 46(2021), No. 58, p. 30101. doi: 10.1016/j.ijhydene.2021.06.140
      [179]
      M. Bilal, J. Gao, K. Shaheen, et al., Performance evaluation of highly active and novel La0.7Sr0.3Ti0.1Fe0.6Ni0.3O3–δ material both as cathode and anode for intermediate-temperature symmetrical solid oxide fuel cell, J. Power Sources, 472(2020), p. 228498. doi: 10.1016/j.jpowsour.2020.228498
      [180]
      H.L. Tao, J.J. Xie, Y.F. Wu, and S.R. Wang, Evaluation of PrNi0.4Fe0.6O3−δ as a symmetrical SOFC electrode material, Int. J. Hydrogen Energy, 43(2018), No. 32, p. 15423. doi: 10.1016/j.ijhydene.2018.06.047
      [181]
      B. Admasu Beshiwork, B. Sirak Teketel, X.Y. Luo, et al., Nanoengineering electrode for yttria-stabilized zirconia-based symmetrical solid oxide fuel cells to achieve superior output performance, Sep. Purif. Technol., 295(2022), art. No. 121174. doi: 10.1016/j.seppur.2022.121174
      [182]
      Y.H. Gu, Y.L. Zhang, Y.F. Zheng, H. Chen, L. Ge, and L.C. Guo, PrBaMn2O5+δ with praseodymium oxide nano-catalyst as electrode for symmetrical solid oxide fuel cells, Appl. Catal., B, 257(2019), p. 117868. doi: 10.1016/j.apcatb.2019.117868

    Catalog


    • /

      返回文章
      返回