Cite this article as: |
Daixiang Wei, Wei Wang, Longjin Jiang, Zhidong Chang, Hualei Zhou, Bin Dong, Dekun Gao, Minghui Zhang, and Chaofan Wu, Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 315-322. https://doi.org/10.1007/s12613-023-2698-2 |
王威 E-mail: weiwang@ipe.ac.cn
常志东 E-mail: zdchang@ustb.edu.cn
Supplementary Information-s12613-023-2698-2.docx |
[1] |
Y.C. Lyu, X. Wu, K. Wang, et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000982. doi: 10.1002/aenm.202000982
|
[2] |
T. Fujita, H. Chen, K.T. Wang, et al., Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
|
[3] |
J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
|
[4] |
Z.X. Tang, H.Q. Ye, X. Ma, and K. Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1618. doi: 10.1007/s12613-021-2296-0
|
[5] |
J.P. Qu, Y.S. Zhao, Y.R. Ji, Y.R. Zhu, and T.F. Yi, Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 611. doi: 10.1007/s12613-022-2532-2
|
[6] |
M.Y. Chen, X.T. Ma, B. Chen, et al., Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3(2019), No. 11, p. 2622. doi: 10.1016/j.joule.2019.09.014
|
[7] |
J.X. Wang, Q. Zhang, J.Z. Sheng, et al., Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries, Natl. Sci. Rev., 9(2022), No. 8, art. No. nwac097. doi: 10.1093/nsr/nwac097
|
[8] |
M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
|
[9] |
C.W. Liu, J. Lin, H.B. Cao, Y. Zhang, and Z. Sun, Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Cleaner Prod., 228(2019), p. 801. doi: 10.1016/j.jclepro.2019.04.304
|
[10] |
X.Y. Guo, X. Cao, G.Y. Huang, Q.H. Tian, and H.Y. Sun, Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling, J. Environ. Manage., 198(2017), p. 84. doi: 10.1016/j.jenvman.2017.04.062
|
[11] |
J. Lin, L. Li, E.S. Fan, et al., Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting, ACS Appl. Mater. Interfaces, 12(2020), No. 16, p. 18482. doi: 10.1021/acsami.0c00420
|
[12] |
J.H. Hou, X.T. Ma, J.Z. Fu, et al., A green closed-loop process for selective recycling of lithium from spent lithium-ion batteries, Green Chem., 24(2022), No. 18, p. 7049. doi: 10.1039/D2GC01811J
|
[13] |
Y.B. Liu, B.Z. Ma, Y.W. Lü, C.Y. Wang, and Y.Q. Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 209. doi: 10.1007/s12613-022-2544-y
|
[14] |
H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1715. doi: 10.1007/s12613-021-2366-3
|
[15] |
J.X. Wang, Z. Liang, Y. Zhao, et al., Direct conversion of degraded LiCoO2 cathode materials into high-performance LiCoO2: A closed-loop green recycling strategy for spent lithium-ion batteries, Energy Storage Mater., 45(2022), p. 768. doi: 10.1016/j.ensm.2021.12.013
|
[16] |
T.N. Lin, Y. Wang, S. Jin, et al., An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries, Green Chem., 24(2022), No. 24, p. 9552. doi: 10.1039/D2GC03439E
|
[17] |
L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
|
[18] |
X.P. Chen, L. Cao, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium, Waste Manage., 80(2018), p. 198. doi: 10.1016/j.wasman.2018.09.013
|
[19] |
X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, and H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol., 210(2019), p. 690. doi: 10.1016/j.seppur.2018.08.072
|
[20] |
W.G. Lv, Z.H. Wang, X.H. Zheng, et al., Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5165. doi: 10.1021/acssuschemeng.9b07515
|
[21] |
J. Guan, Y.G. Li, Y.G. Guo, et al. , Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 1026. doi: 10.1021/acssuschemeng.6b02337
|
[22] |
Y.Z. Jiang, X.P. Chen, S.X. Yan, S.Z. Li, and T. Zhou, Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through Ferro-chemistry, Chem. Eng. J., 426(2021), art. No. 131637. doi: 10.1016/j.cej.2021.131637
|
[23] |
X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, J. Hazard. Mater., 389(2020), art. No. 121887. doi: 10.1016/j.jhazmat.2019.121887
|
[24] |
Y.F. Zheng, P.H. Shao, L.M. Yang, et al., Gas exchange-driven carbothermal reduction for simultaneous lithium extraction from anode and cathode scraps, Resour. Conserv. Recycl., 188(2023), art. No. 106696. doi: 10.1016/j.resconrec.2022.106696
|
[25] |
Z.M. Yan, A. Sattar, and Z.S. Li, Priority Lithium recovery from spent Li-ion batteries via carbothermal reduction with water leaching, Resour. Conserv. Recycl., 192(2023), art. No. 106937. doi: 10.1016/j.resconrec.2023.106937
|
[26] |
N. Wei, Y.Q. He, G.W. Zhang, et al., Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting, J. Environ. Manage., 329(2023), art. No. 117107. doi: 10.1016/j.jenvman.2022.117107
|
[27] |
R. Morina, D. Merli, P. Mustarelli, and C. Ferrara, Lithium and cobalt recovery from lithium-ion battery waste via functional ionic liquid extraction for effective battery recycling, ChemElectroChem, 10(2023), No. 1, art. No. e202201059.
|
[28] |
J.L. Zhang, J.T. Hu, W.J. Zhang, Y.Q. Chen, and C.Y. Wang, Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries, J. Clean. Prod., 204(2018), p. 437. doi: 10.1016/j.jclepro.2018.09.033
|
[29] |
J.F. Xiao, J. Li, and Z.M. Xu, Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy, Environ. Sci. Technol., 51(2017), No. 20, p. 11960. doi: 10.1021/acs.est.7b02561
|
[30] |
X.P. Chen, Y. Wang, S.Z. Li, Y.Z. Jiang, Y. Cao, and X. Ma, Selective recycling of valuable metals from waste LiCoO2 cathode material of spent lithium-ion batteries through low-temperature thermochemistry, Chem. Eng. J., 434(2022), art. No. 134542. doi: 10.1016/j.cej.2022.134542
|
[31] |
F.Y. Zhou, X. Qu, Y.X. Wu, et al., Vacuum pyrolysis of pine sawdust to recover spent lithium ion batteries: The synergistic effect of carbothermic reduction and pyrolysis gas reduction, ACS Sustainable Chem. Eng., 10(2022), No. 3, p. 1287. doi: 10.1021/acssuschemeng.1c07424
|
[32] |
W.Q. Wang, Y.C. Zhang, X.G. Liu, and S.M. Xu, A simplified process for recovery of Li and co from spent LiCoO2 cathode using Al foil as the in situ reductant, ACS Sustainable Chem. Eng., 7(2019), No. 14, p. 12222.
|
[33] |
P. Xu, C.W. Liu, X.H. Zhang, et al., Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 5, p. 2271. doi: 10.1021/acssuschemeng.0c08213
|
[34] |
B.A. Nuraeni, K. Avarmaa, L.H. Prentice, W.J. Rankin, and M.A. Rhamdhani, Recovery of cobalt and lithium by carbothermic reduction of LiCoO2 cathode material: A kinetic study, Metall. Mater. Trans. B, 54(2023), No. 2, p. 602. doi: 10.1007/s11663-022-02712-1
|
[35] |
M.M. Wang, K. Liu, Z.B. Xu, et al., Selective extraction of critical metals from spent lithium-ion batteries, Environ. Sci. Technol., 57(2023), No. 9, p. 3940. doi: 10.1021/acs.est.2c07689
|
[36] |
Y.Q. Tang, H.W. Xie, B.L. Zhang, et al., Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co, Waste Manage., 97(2019), p. 140. doi: 10.1016/j.wasman.2019.08.004
|
[37] |
S. Park, S. Jung, D. Kwon, M. Beak, E.E. Kwon, and K. Kwon, Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium, Chem. Eng. J., 435(2022), art. No. 135165. doi: 10.1016/j.cej.2022.135165
|
[38] |
J.K. Mao, J. Li, and Z.M. Xu, Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries, J. Cleaner Prod., 205(2018), p. 923. doi: 10.1016/j.jclepro.2018.09.098
|
[39] |
J. Li, G.X. Wang, and Z.M. Xu, Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, J. Hazard. Mater., 302(2016), p. 97. doi: 10.1016/j.jhazmat.2015.09.050
|
[40] |
M. Petranikova, A. Miškufová, T. Havlík, O. Forsén, and A. Pehkonen, Cobalt recovery from spent portable lithium accumulators after thermal treatment, Acta Metall. Slovaca, 17(2011), No. 2, p. 106.
|
[41] |
Y. Yang, W. Sun, Y.J. Bu, C.Y. Zhang, S.L. Song, and Y.H. Hu, Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 10445. doi: 10.1021/acssuschemeng.8b01805
|
[42] |
N. Vieceli, R. Casasola, G. Lombardo, B. Ebin, and M. Petranikova, Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid, Waste Manage., 125(2021), p. 192. doi: 10.1016/j.wasman.2021.02.039
|
[43] |
R. Hossain, U. Kumar, and V. Sahajwalla, Selective thermal transformation of value added cobalt from spent lithium-ion batteries, J. Cleaner Prod., 293(2021), art. No. 126140. doi: 10.1016/j.jclepro.2021.126140
|
[44] |
G. Lombardo, B. Ebin, M.R.St.J. Foreman, B.M. Steenari, and M. Petranikova, Chemical transformations in Li-ion battery electrode materials by carbothermic reduction, ACS Sustainable Chem. Eng., 7(2019), No. 16, p. 13668. doi: 10.1021/acssuschemeng.8b06540
|
[45] |
Y.C. Lu, A.N. Mansour, N. Yabuuchi, and Y. Shao-Horn, Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: Combined XRD and XPS studies, Chem. Mater., 21(2009), No. 19, p. 4408. doi: 10.1021/cm900862v
|
[46] |
P.C. Liu, L. Xiao, Y.F. Chen, Y.W. Tang, J. Wu, and H. Chen, Recovering valuable metals from LiNi x Co y Mn1– x – y O2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching, J. Alloys Compd., 783(2019), p. 743. doi: 10.1016/j.jallcom.2018.12.226
|
[47] |
G. Lombardo, B. Ebin, M.R.S.J. Foreman, B.M. Steenari, and M. Petranikova, Incineration of EV lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds, J. Hazard. Mater., 393(2020), art. No. 122372. doi: 10.1016/j.jhazmat.2020.122372
|
[48] |
B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
|
[49] |
S. Lee, W. Jin, S.H. Kim, et al., Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials, Angew. Chem. Int. Ed., 58(2019), No. 31, p. 10478. doi: 10.1002/anie.201904469
|
[50] |
M.L. Wang, C. Liu, H. Shi, T.Y. Long, C.Y. Zhang, and B. Liu, Facile synthesis of chitosan-derived Maillard reaction productions coated CuFeO2 with abundant oxygen vacancies for higher Fenton-like catalytic performance, Chemosphere, 283(2021), art. No. 131191. doi: 10.1016/j.chemosphere.2021.131191
|
[51] |
D.S. Kim, J.S. Sohn, C.K. Lee, J.H. Lee, K.S. Han, and Y.I. Lee, Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sources, 132(2004), No. 1-2, p. 145. doi: 10.1016/j.jpowsour.2003.09.046
|
[52] |
B. Makuza, D.W. Yu, Z. Huang, Q.H. Tian, and X.Y. Guo, Dry grinding-carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals, Resour. Conserv. Recycl., 174(2021), art. No. 105784. doi: 10.1016/j.resconrec.2021.105784
|