留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(7)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  478
  • HTML全文浏览量:  201
  • PDF下载量:  37
  • 被引次数: 0
Thongsuk Sichumsaeng, Atchara Chinnakorn, Ornuma Kalawa, Jintara Padchasri, Pinit Kidkhunthod,  and Santi Maensiri, Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol–gel and electrospinning methods: Effect of Na-excess content, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1887-1896. https://doi.org/10.1007/s12613-023-2702-x
Cite this article as:
Thongsuk Sichumsaeng, Atchara Chinnakorn, Ornuma Kalawa, Jintara Padchasri, Pinit Kidkhunthod,  and Santi Maensiri, Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol–gel and electrospinning methods: Effect of Na-excess content, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1887-1896. https://doi.org/10.1007/s12613-023-2702-x
引用本文 PDF XML SpringerLink
研究论文

对比溶胶–凝胶法和静电纺丝法制备的混合P2/O′3型层状镍锰酸钠正极材料的结构和电化学性能:Na过剩量的影响



  • 通讯作者:

    and Santi Maensiri    E-mail: santimaensiri@gmail.com

  • Research Article

    Comparative structural and electrochemical properties of mixed P2/O′3-layered sodium nickel manganese oxide prepared by sol–gel and electrospinning methods: Effect of Na-excess content

    + Author Affiliations
    • The effect of Na-excess content in the precursor on the structural and electrochemical performances of sodium nickel manganese oxide (NNMO) prepared by sol–gel and electrospinning methods is investigated in this paper. X-ray diffraction results of the prepared NNMO without adding Na-excess content indicate sodium loss, while the mixed phase of P2/O′3-type layered NNMO presented after adding Na-excess content. Compared with the sol–gel method, the secondary phase of NiO is more suppressed by using the electrospinning method, which is further confirmed by field emission scanning electron microscope images. N2 adsorption–desorption isotherms show no remarkably difference in specific surface areas between different preparation methods and Na-excess contents. The analysis of X-ray absorption near edge structure indicates that the oxidation states of Ni and Mn are +2 and +4, respectively. For the electrochemical properties, superior electrochemical performance is observed in the NNMO electrode with a low Na-excess content of 5wt%. The highest specific capacitance is 36.07 F·g−1 at 0.1 A·g−1 in the NNMO electrode prepared by using the sol–gel method. By contrast, the NNMO electrode prepared using the electrospinning method with decreased Na-excess content shows excellent cycling stability of 100% after charge–discharge measurements for 300 cycles. Therefore, controlling the Na excess in the precursor together with the preparation method is important for improving the electrochemical performance of Na-based electrode materials in supercapacitors.
    • loading
    • Supplementary Information-10.1007s12613-023-2702.docx
    • [1]
      Z. Cheng, H. Pan, F. Li, et al., Achieving long cycle life for all-solid-state rechargeable Li-I2 battery by a confined dissolution strategy, Nat. Commun., 13(2022), art. No. 125. doi: 10.1038/s41467-021-27728-0
      [2]
      H.H. Sun, U.H. Kim, J.H. Park, et al., Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries, Nat. Commun., 12(2021), art. No. 6552. doi: 10.1038/s41467-021-26815-6
      [3]
      M.Z. Chen, Y.Y. Zhang, G.C. Xing, and Y.X. Tang, Building high power density of sodium-ion batteries: Importance of multidimensional diffusion pathways in cathode materials, Front. Chem., 8(2020), art. No. 152. doi: 10.3389/fchem.2020.00152
      [4]
      K. Liu, Y.Y. Liu, D.C. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety, Sci. Adv., 4(2018), No. 6, art. No. eaas9820. doi: 10.1126/sciadv.aas9820
      [5]
      L.N. Chen, Y.M. Zhang, C.Y. Hao, et al., Interlayer engineering of KxMnO2 enables superior alkali metal ion storage for advanced hybrid capacitors, ChemElectroChem, 9(2022), No. 12, art. No. e202200059. doi: 10.1002/celc.202200059
      [6]
      Z.N. Tian, Y.G. Zou, G. Liu, Y.Z. Wang, J. Yin, J. Ming, and H.N. Alshareef, Electrolyte solvation structure design for sodium ion batteries, Adv. Sci., 9(2022), No. 22, art. No. 2201207. doi: 10.1002/advs.202201207
      [7]
      E. Gonzalo, M. Zarrabeitia, N.E. Drewett, J.M. López del Amo, and T. Rojo, Sodium manganese-rich layered oxides: Potential candidates as positive electrode for Sodium-ion batteries, Energy Storage Mater., 34(2021), p. 682. doi: 10.1016/j.ensm.2020.10.010
      [8]
      S. Biswas, A. Chowdhury, and A. Chandra, Performance of Na-ion supercapacitors under non-ambient conditions—From temperature to magnetic field dependent variation in specific capacitance, Front. Mater., 6(2019), art. No. 54. doi: 10.3389/fmats.2019.00054
      [9]
      A. Chowdhury, S. Biswas, D. Mandal, and A. Chandra, Facile strategy of using conductive additive supported NaMnPO4 nanoparticles for delivering high performance Na-ion supercapacitors, J. Alloys Compd., 902(2022), art. No. 163733. doi: 10.1016/j.jallcom.2022.163733
      [10]
      W.N. Xu, J. Wan, W.C. Huo, et al., Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life, Chem. Eng. J., 354(2018), p. 1050. doi: 10.1016/j.cej.2018.08.033
      [11]
      P. Simon and Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater., 19(2020), No. 11, p. 1151. doi: 10.1038/s41563-020-0747-z
      [12]
      Q.H. Shi, R.J. Qi, X.C. Feng, et al., Niobium-doped layered cathode material for high-power and low-temperature sodium-ion batteries, Nat. Commun., 13(2022), art. No. 3205. doi: 10.1038/s41467-022-30942-z
      [13]
      B. Hu, F.S. Geng, C. Zhao, et al., Deciphering the origin of high electrochemical performance in a novel Ti-substituted P2/O3 biphasic cathode for sodium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41485. doi: 10.1021/acsami.0c11427
      [14]
      K.Z. Jiang, X.P. Zhang, H.Y. Li, et al., Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 16, p. 14848. doi: 10.1021/acsami.9b03326
      [15]
      M. Keller, D. Buchholz, and S. Passerini, Layered Na-ion cathodes with outstanding performance resulting from the synergetic effect of mixed P- and O-type phases, Adv. Energy Mater., 6(2016), No. 3, art. No. 1501555. doi: 10.1002/aenm.201501555
      [16]
      Z.G. Liu, K.Z. Jiang, S.Y. Chu, et al., Integrating P2 into O′3 toward a robust Mn-based layered cathode for sodium-ion batteries, J. Mater. Chem. A, 8(2020), No. 45, p. 23820. doi: 10.1039/D0TA08383F
      [17]
      G.K. Veerasubramani, Y. Subramanian, M.S. Park, et al., Enhanced sodium-ion storage capability of P2/O3 biphase by Li-ion substitution into P2-type Na0.5Fe0.5Mn0.5O2 layered cathode, Electrochim. Acta, 296(2019), p. 1027. doi: 10.1016/j.electacta.2018.11.160
      [18]
      S.H. Guo, P. Liu, H.J. Yu, et al., A layered P2- and O3-Type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem., 127(2015), No. 20, p. 5992. doi: 10.1002/ange.201411788
      [19]
      F. Fu, X. Liu, X.G. Fu, et al., Entropy and crystal-facet modulation of P2-type layered cathodes for long-lasting sodium-based batteries, Nat. Commun., 13(2022), art. No. 2826. doi: 10.1038/s41467-022-30113-0
      [20]
      B. Pandit, S.R. Rondiya, N.Y. Dzade, et al., High stability and long cycle life of rechargeable sodium-ion battery using manganese oxide cathode: A combined density functional theory (DFT) and experimental study, ACS Appl. Mater. Interfaces, 13(2021), No. 9, p. 11433. doi: 10.1021/acsami.0c21081
      [21]
      B. Qiu, J. Wang, Y.G. Xia, et al., Effects of Na+ contents on electrochemical properties of Li1.2Ni0.13Co0.13Mn0.54O2 cathode materials, J. Power Sources, 240(2013), p. 530. doi: 10.1016/j.jpowsour.2013.04.047
      [22]
      Q. Huang, P.G. He, L. Xiao, et al., Effect of sodium content on the electrochemical performance of Li-substituted, manganese-based, sodium-ion layered oxide cathodes, ACS Appl. Mater. Interfaces, 12(2020), No. 2, p. 2191. doi: 10.1021/acsami.9b12984
      [23]
      L.F. Yang, C. Chen, S. Xiong, et al., Multiprincipal component P2-Na0.6(Ti0.2Mn0.2Co0.2Ni0.2Ru0.2)O2 as a high-rate cathode for sodium-ion batteries, JACS Au, 1(2021), No. 1, p. 98. doi: 10.1021/jacsau.0c00002
      [24]
      D.D. Yuan, Y.X. Wang, Y.L. Cao, X.P. Ai, and H.X. Yang, Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 16, p. 8585. doi: 10.1021/acsami.5b00594
      [25]
      V. Petříček, M. Dušek, and L. Palatinus, Crystallographic computing system JANA2006: General features, Z. Kristallogr., 229(2014), No. 5, p. 345.
      [26]
      L.F. Pfeiffer, N. Jobst, C. Gauckler, et al., Layered P2-NaxMn3/4Ni1/4O2 cathode materials for sodium-ion batteries: Synthesis, electrochemistry and influence of ambient storage, Front. Energy Res., 10(2022), art. No. 910842. doi: 10.3389/fenrg.2022.910842
      [27]
      C.J. Zhou, L.C. Yang, C.G. Zhou, et al., Co-substitution enhances the rate capability and stabilizes the cyclic performance of O3-Type cathode NaNi0.45–xMn0.25Ti0.3CoxO2 for sodium-ion storage at high voltage, ACS Appl. Mater. Interfaces, 11(2019), No. 8, p. 7906. doi: 10.1021/acsami.8b17945
      [28]
      Z.J. Huang, Z.X. Wang, X.B. Zheng, et al., Structural and electrochemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2−xMgxO2 for lithium ion batteries, RSC Adv., 5(2015), No. 108, p. 88773. doi: 10.1039/C5RA16633K
      [29]
      L.G. Wang, J.J. Wang, X.Y. Zhang, et al., Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries, Nano Energy, 34(2017), p. 215. doi: 10.1016/j.nanoen.2017.02.046
      [30]
      R.B. Dang, M.M. Chen, Q. Li, et al., Na+-conductive Na2Ti3O7-modified P2-type Na2/3Ni1/3Mn2/3O2 via a smart in situ coating approach: Suppressing Na+/vacancy ordering and P2–O2 phase transition, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 856. doi: 10.1021/acsami.8b17976
      [31]
      G.X. Wang, W. Xiao, and J.G. Yu, High-efficiency dye-sensitized solar cells based on electrospun TiO2 multi-layered composite film photoanodes, Energy, 86(2015), p. 196. doi: 10.1016/j.energy.2015.03.127
      [32]
      F. Zhang, H.C. Liu, Z.F. Wu, et al., Polyacrylamide gel-derived nitrogen-doped carbon foam yields high performance in supercapacitor electrodes, ACS Appl. Energy Mater., 4(2021), No. 7, p. 6719. doi: 10.1021/acsaem.1c00777
      [33]
      T. Risthaus, L.F. Chen, J. Wang, et al., P3 Na0.9Ni0.5Mn0.5O2 cathode material for sodium ion batteries, Chem. Mater., 31(2019), No. 15, p. 5376. doi: 10.1021/acs.chemmater.8b03270
      [34]
      L.Q. Mai, H. Li, Y.L. Zhao, et al., Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor, Sci. Rep., 3(2013), art. No. 1718. doi: 10.1038/srep01718
      [35]
      A. Singh and A. Chandra, Enhancing specific energy and power in asymmetric supercapacitors - A synergetic strategy based on the use of redox additive electrolytes, Sci. Rep., 6(2016), art. No. 25793. doi: 10.1038/srep25793
      [36]
      S. Birgisson, T.L. Christiansen, and B.B. Iversen, Exploration of phase compositions, crystal structures, and electrochemical properties of NaxFeyMn1–yO2 sodium ion battery materials, Chem. Mater., 30(2018), No. 19, p. 6636. doi: 10.1021/acs.chemmater.8b01566
      [37]
      M.D. Jiang, G.N. Qian, X.Z. Liao, et al., Revisiting the capacity-fading mechanism of P2-type sodium layered oxide cathode materials during high-voltage cycling, J. Energy Chem., 69(2022), p. 16. doi: 10.1016/j.jechem.2022.01.010
      [38]
      Q.L. Fan, K.J. Lin, S.D. Yang, et al., Constructing effective TiO2 nano-coating for high-voltage Ni-rich cathode materials for lithium ion batteries by precise kinetic control, J. Power Sources, 477(2020), art. No. 228745. doi: 10.1016/j.jpowsour.2020.228745
      [39]
      Y.J. Zhang, K. Du, Y.B. Cao, et al., Hydrothermal preparing agglomerate LiNi0.8Co0.1Mn0.1O2 cathode material with submicron primary particle for alleviating microcracks, J. Power Sources, 477(2020), art. No. 228701. doi: 10.1016/j.jpowsour.2020.228701

    Catalog


    • /

      返回文章
      返回