Cite this article as:

Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, and Jikun Chen, Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp.2441-2450. https://dx.doi.org/10.1007/s12613-023-2703-9
Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, and Jikun Chen, Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp.2441-2450. https://dx.doi.org/10.1007/s12613-023-2703-9
引用本文 PDF XML SpringerLink

金属有机分解法生长具有优异电子相变特性的亚稳相稀土镍基氧化物薄膜

摘要: 以稀土镍基氧化物(RENiO3)为代表的过渡族金属氧化物多场触发下所发生的多重量子态转变为设计制备新型强关联电子器件提供了宽广的探索空间。与VO2等常见电子相变材料相比,RENiO3的优势在于可以通过稀土元素组分设计实现其金属绝缘体转变温度在跨越400 K的宽广温区范围内的连续调节。除传统的金属绝缘体相变外,RENiO3还可以由氢触发其基于Ni3+的电子迅游态转变为基于Ni2+的电子局域态,引起电子电导率的可逆巨幅增加,进一步开启了RENiO3在海洋电场传感、神经元逻辑器件、生物质传感等方面的潜在应用探索。而更为值得关注的是2019年镍基超导特性的发现,使得RENiO3成为凝聚态物理领域的研究热点之一。然而,开展相关研究的壁垒在于RENiO3材料处于热力学亚稳相,其具有正的吉布斯自由能因而难以通过传统的固相反应实现材料生长,特别是现有真空沉积技术难以实现对其稀土组分与电子结构的灵活调控。针对上述问题,本文设计了一种金属有机分解法(MOD),通过高氧压下固相反应与界面非均匀形核协同作用制备了涵盖一系列稀土组分的RENiO3薄膜材料。与以往报道的化学技术相比,该方法通过对金属有机化合物前驱体的组分设计实现了稀土元素组分的灵活调控,且所使用的前驱体具有更高的反应活性,因此可以有效提高薄膜的沉积厚度。进一步的研究结果表明MOD制备的RENiO3薄膜中具有大量的晶格缺陷,促进了氢的进入以及电子的转移,有效地提高了RENiO3电阻的调控幅度,揭示了缺陷工程可能是调控强关联电子氧化物材料氢致电子相变特性的有效方法。

 

Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions

Abstract: The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates (RENiO3) triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications, e.g. ocean electric field sensor, bio-sensor, and neuron synapse logical devices. Nevertheless, these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO3 with flexibly adjustable rare-earth compositions and electronic structures. Herein, we demonstrate a metal-organic decompositions (MOD) approach that can effectively grow metastable RENiO3 covering a large variety of the rare-earth composition without introducing any vacuum process. Unlike the previous chemical growths for RENiO3 relying on strict interfacial coherency that limit the film thickness, the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions. Further indicated by positron annihilation spectroscopy, the RENiO3 grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers, as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis. This effectively enlarges the magnitude in the resistance regulations in particular for RENiO3 with lighter RE, shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.

 

/

返回文章
返回