留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1520
  • HTML全文浏览量:  235
  • PDF下载量:  59
  • 被引次数: 0
Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi,  and Bai Cui, Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 146-154. https://doi.org/10.1007/s12613-023-2711-9
Cite this article as:
Yongchul Yoo, Xiang Zhang, Fei Wang, Xin Chen, Xing-Zhong Li, Michael Nastasi,  and Bai Cui, Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 146-154. https://doi.org/10.1007/s12613-023-2711-9
引用本文 PDF XML SpringerLink
研究论文

放电等离子体烧结的含钨难熔高熵合金


  • 通讯作者:

    Bai Cui    E-mail: bcui3@unl.edu

文章亮点

  • (1) 开发了机械合金化结合放电等离子体烧结的粉末冶金工艺来制备含钨难熔高熵合金。
  • (2) 揭示了高熵合金基体中钽钒氧化物的形成机理。
  • (3) 发现WTaVCr的硬度高于钨和其他含钨高熵合金而且能保持到1000摄氏度。
  • WTaVCr难熔高熵合金是聚变堆中面向等离子体部件的一种新型候选材料。本研究用一种机械合金化结合放电等离子体烧结的粉末冶金工艺来制备这种合金。 通过X射线衍射,能量色散X射线谱和选区电子衍射分析,高熵合金样品包含体心立方结构的难熔高熵合金基体和钽钒氧化物颗粒两种相。热力学计算表明,钽和钒的高氧亲和力可以解释钽钒氧化物的形成。电子背散射衍射揭示高熵合金的平均晶粒尺寸为6.2 μm。WTaVCr在室温下的抗压强度为2997 MPa,微米和纳米硬度都显著高于钨和其他文献报道过的含钨高熵合金,其高洛氏硬度能够保持到1000°C。
  • Research Article

    Spark plasma sintering of tungsten-based WTaVCr refractory high entropy alloys for nuclear fusion applications

    + Author Affiliations
    • W-based WTaVCr refractory high entropy alloys (RHEA) may be novel and promising candidate materials for plasma facing components in the first wall and diverter in fusion reactors. This alloy has been developed by a powder metallurgy process combining mechanical alloying and spark plasma sintering (SPS). The SPSed samples contained two phases, in which the matrix is RHEA with a body-centered cubic structure, while the oxide phase was most likely Ta2VO6 through a combined analysis of X-ray diffraction (XRD), energy-dispersive spectroscopy (EDS), and selected area electron diffraction (SAED). The higher oxygen affinity of Ta and V may explain the preferential formation of their oxide phases based on thermodynamic calculations. Electron backscatter diffraction (EBSD) revealed an average grain size of 6.2 μm. WTaVCr RHEA showed a peak compressive strength of 2997 MPa at room temperature and much higher micro- and nano-hardness than W and other W-based RHEAs in the literature. Their high Rockwell hardness can be retained to at least 1000°C.
    • loading
    • [1]
      R.G. Abernethy, Predicting the performance of tungsten in a fusion environment: A literature review, Mater. Sci. Technol., 33(2017), No. 4, p. 388. doi: 10.1080/02670836.2016.1185260
      [2]
      K. Huang, L.M. Luo, X. Zan, et al., Microstructure and damage behavior of W–Cr alloy under He irradiation, J. Nucl. Mater., 501(2018), p. 181. doi: 10.1016/j.jnucmat.2018.01.019
      [3]
      T. Fu, K.K. Cui, Y.Y. Zhang, et al., Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review, J. Alloys Compd., 884(2021), art. No. 161057. doi: 10.1016/j.jallcom.2021.161057
      [4]
      H. Bolt, V. Barabash, W. Krauss, et al., Materials for the plasma-facing components of fusion reactors, J. Nucl. Mater., 329-333(2004), p. 66. doi: 10.1016/j.jnucmat.2004.04.005
      [5]
      D. Stork, P. Agostini, J.L. Boutard, et al., Developing structural, high-heat flux and plasma facing materials for a near-term DEMO fusion power plant: The EU assessment, J. Nucl. Mater., 455(2014), No. 1-3, p. 277. doi: 10.1016/j.jnucmat.2014.06.014
      [6]
      J.H. You, Copper matrix composites as heat sink materials for water-cooled divertor target, Nucl. Mater. Energy, 5(2015), p. 7. doi: 10.1016/j.nme.2015.10.001
      [7]
      R. Neu, C. Hopf, A. Kallenbach, et al., Operational conditions in a W-clad tokamak, J. Nucl. Mater., 367-370(2007), p. 1497. doi: 10.1016/j.jnucmat.2007.04.018
      [8]
      C.P.C. Wong, C. Baxi, R. Bourque, et al., Helium cooling of fusion reactors, Fusion Eng. Des., 25(1994), No. 1-3, p. 249. doi: 10.1016/0920-3796(94)90069-8
      [9]
      J. Linke, J. Du, T. Loewenhoff, et al., Challenges for plasma-facing components in nuclear fusion, Matter Radiat. Extrem., 4(2019), No. 5, art. No. 056201. doi: 10.1063/1.5090100
      [10]
      B. Riccardi, P. Gavila, J. Andrade, et al., Progress of the EU activities for the ITER Divertor Inner Vertical Target procurement, Fusion Eng. Des., 146(2019), p. 1524. doi: 10.1016/j.fusengdes.2019.02.120
      [11]
      J. Schlosser, F. Escourbiac, M. Merola, et al., Technologies for ITER divertor vertical target plasma facing components, Nucl. Fusion, 45(2005), No. 6, p. 512. doi: 10.1088/0029-5515/45/6/013
      [12]
      K. Krieger, H. Maier, and R. Neu, Conclusions about the use of tungsten in the divertor of ASDEX upgrade, J. Nucl. Mater., 266-269(1999), p. 207. doi: 10.1016/S0022-3115(98)00890-3
      [13]
      N.M. Almousa and M. Bourham, Simulation of erosion and redeposition of plasma facing materials under transient plasma instabilities, IEEE Trans. Plasma Sci., 48(2020), No. 6, p. 1512. doi: 10.1109/TPS.2020.2963844
      [14]
      M.I. Patino, D. Nishijima, M. Tokitani, D. Nagata, J.H. Yu, and R.P. Doerner, Material migration in W and Mo during bubble growth and fuzz formation, Nucl. Fusion, 61(2021), No. 7, art. No. 076001. doi: 10.1088/1741-4326/abf952
      [15]
      F. Sefta, K.D. Hammond, N. Juslin, and B.D. Wirth, Tungsten surface evolution by helium bubble nucleation, growth and rupture, Nucl. Fusion, 53(2013), No. 7, art. No. 073015. doi: 10.1088/0029-5515/53/7/073015
      [16]
      P. Gumbsch, J. Riedle, A. Hartmaier, and H.F. Fischmeister, Controlling factors for the brittle-to-ductile transition in tungsten single crystals, Science, 282(1998), No. 5392, p. 1293. doi: 10.1126/science.282.5392.1293
      [17]
      P. Gumbsch, Brittle fracture and the brittle-to-ductile transition of tungsten, J. Nucl. Mater., 323(2003), No. 2-3, p. 304. doi: 10.1016/j.jnucmat.2003.08.009
      [18]
      E.Y. Ivanov, C. Suryanarayana, and B.D. Bryskin, Synthesis of a nanocrystalline W–25 wt.% Re alloy by mechanical alloying, Mater. Sci. Eng. A, 251(1998), No. 1-2, p. 255. doi: 10.1016/S0921-5093(98)00620-0
      [19]
      T. Hwang, A. Hasegawa, K. Tomura, et al., Effect of neutron irradiation on rhenium cluster formation in tungsten and tungsten-rhenium alloys, J. Nucl. Mater., 507(2018), p. 78. doi: 10.1016/j.jnucmat.2018.04.031
      [20]
      R. Mateus, M. Dias, J. Lopes, et al., Blistering of W-Ta composites at different irradiation energies, J. Nucl. Mater., 438(2013), p. S1032. doi: 10.1016/j.jnucmat.2013.01.225
      [21]
      K. Arshad, M.Y. Zhao, Y. Yuan, et al., Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys, J. Nucl. Mater., 455(2014), No. 1-3, p. 96. doi: 10.1016/j.jnucmat.2014.04.019
      [22]
      P.B. Kemp and R.M. German, Grain growth in liquid-phase-sintered W–Mo–Ni–Fe alloys, J. Less Common Met., 175(1991), No. 2, p. 353. doi: 10.1016/0022-5088(91)90022-V
      [23]
      C.L. Chen and Y. Zeng, Synthesis and characteristics of W–Ti alloy dispersed with Y2Ti2O7 oxides, Int. J. Refract. Met. Hard Mater., 56(2016), p. 104. doi: 10.1016/j.ijrmhm.2015.12.008
      [24]
      O. El-Atwani, N. Li, M. Li, et al., Outstanding radiation resistance of tungsten-based high-entropy alloys, Sci. Adv., 5(2019), No. 3, art. No. eaav2002. doi: 10.1126/sciadv.aav2002
      [25]
      O.A. Waseem and H.J. Ryu, Powder metallurgy processing of a WxTaTiVCr high-entropy alloy and its derivative alloys for fusion material applications, Sci. Rep., 7(2017), No. 1, art. No. 1926. doi: 10.1038/s41598-017-02168-3
      [26]
      O.A. Waseem, J. Lee, H.M. Lee, and H.J. Ryu, The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials, Mater. Chem. Phys., 210(2018), p. 87. doi: 10.1016/j.matchemphys.2017.06.054
      [27]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [28]
      J.M. Torralba, P. Alvaredo, and A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review, Powder Metall., 62(2019), No. 2, p. 84. doi: 10.1080/00325899.2019.1584454
      [29]
      Y. Zhang, T.T. Zuo, Z. Tang, et al., Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
      [30]
      O.N. Senkov, D.B. Miracle, K.J. Chaput, and J.P. Couzinie, Development and exploration of refractory high entropy alloys—A review, J. Mater. Res., 33(2018), No. 19, p. 3092. doi: 10.1557/jmr.2018.153
      [31]
      W. Xiong, A.X.Y. Guo, S. Zhan, C.T. Liu, and S.C. Cao, Refractory high-entropy alloys: A focused review of preparation methods and properties, J. Mater. Sci. Technol., 142(2023), p. 196. doi: 10.1016/j.jmst.2022.08.046
      [32]
      O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Refractory high-entropy alloys, Intermetallics, 18(2010), No. 9, p. 1758. doi: 10.1016/j.intermet.2010.05.014
      [33]
      O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
      [34]
      S. Alvi and F. Akhtar, High temperature tribology of CuMoTaWV high entropy alloy, Wear, 426.
      [35]
      B. Kang, J. Lee, H.J. Ryu, and S.H. Hong, Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process, Mater. Sci. Eng. A, 712(2018), p. 616. doi: 10.1016/j.msea.2017.12.021
      [36]
      A.X. Lin-Vines, J.A. Wilson, A. Fraile, et al., Defect behaviour in the MoNbTaVW high entropy alloy (HEA), Results Mater., 15(2022), art. No. 100320. doi: 10.1016/j.rinma.2022.100320
      [37]
      X.L. Yan, X. Zhang, F. Wang, et al., Fabrication of ODS austenitic steels and CoCrFeNi high-entropy alloys by spark plasma sintering for nuclear energy applications, JOM, 71(2019), No. 8, p. 2856. doi: 10.1007/s11837-019-03531-7
      [38]
      C.S. Bonifacio, T.B. Holland, and K. van Benthem, Evidence of surface cleaning during electric field assisted sintering, Scripta Mater., 69(2013), No. 11-12, p. 769. doi: 10.1016/j.scriptamat.2013.08.018
      [39]
      R. Orrù, R. Licheri, A.M. Locci, A. Cincotti, and G. Cao, Consolidation/synthesis of materials by electric current activated/assisted sintering, Mater. Sci. Eng. R, 63(2009), No. 4-6, p. 127. doi: 10.1016/j.mser.2008.09.003
      [40]
      X. Zhang, F. Wang, X.L. Yan, X.Z. Li, K. Hattar, and B. Cui, Nanostructured oxide-dispersion-strengthened CoCrFeMnNi high-entropy alloys with high thermal stability, Adv. Eng. Mater., 23(2021), No. 9, art. No. 2100291. doi: 10.1002/adem.202100291
      [41]
      Y.F. Ye, Y.H. Zhang, Q.F. He, et al., Atomic-scale distorted lattice in chemically disordered equimolar complex alloys, Acta Mater., 150(2018), p. 182. doi: 10.1016/j.actamat.2018.03.008
      [42]
      Q.F. He and Y. Yang, On lattice distortion in high entropy alloys, Front. Mater., 5(2018), art. No. 42. doi: 10.3389/fmats.2018.00042
      [43]
      L. Backman and E.J. Opila, Thermodynamic assessment of the group IV, V and VI oxides for the design of oxidation resistant multi-principal component materials, J. Eur. Ceram. Soc., 39(2019), No. 5, p. 1796. doi: 10.1016/j.jeurceramsoc.2018.11.004
      [44]
      A. Mittal, G.J. Albertsson, G.S. Gupta, S. Seetharaman, and S. Subramanian, Some thermodynamic aspects of the oxides of chromium, Metall. Mater. Trans. B, 45(2014), No. 2, p. 338. doi: 10.1007/s11663-014-0027-x
      [45]
      Z. Cao, S. Li, W. Xie, G. Du, and Z. Qiao, Critical evaluation and thermodynamic optimization of the V-O system, Calphad, 51(2015), p. 241. doi: 10.1016/j.calphad.2015.10.003
      [46]
      C.B. Hamilton and H.A. Wilhelm, The preparation of tantalum metal by the carbon reduction of tantalum pentoxide, [in] Proceedings of the Iowa Academy of Science, Iowa, 1961, p. 189.
      [47]
      N. Senthilnathan, A.R. Annamalai, and G. Venkatachalam, Synthesis of tungsten through spark plasma and conventional sintering processes, Mater. Today Proc., 5(2018), No. 2, p. 7954. doi: 10.1016/j.matpr.2017.11.478
      [48]
      O. El-Atwani, D.V. Quach, M. Efe, et al., Multimodal grain size distribution and high hardness in fine grained tungsten fabricated by spark plasma sintering, Mater. Sci. Eng. A, 528(2011), No. 18, p. 5670. doi: 10.1016/j.msea.2011.04.015
      [49]
      X.H. An, Structural hierarchy defeats alloy cracking, Science, 373(2021), No. 6557, p. 857. doi: 10.1126/science.abk1671
      [50]
      P.J. Shi, R.G. Li, Y. Li, et al., Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
      [51]
      D.Q. Chen, G.Y. Zhou, Z.P. Liu, and S.T. Tu, Nanoindentation experimental study on mechanical properties of As-cast BNi-2 solder alloy, Procedia Eng., 130(2015), p. 652. doi: 10.1016/j.proeng.2015.12.289
      [52]
      R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, and K.V. Rajulapati, Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods, Acta Mater., 125(2017), p. 58. doi: 10.1016/j.actamat.2016.11.046
      [53]
      L.M. Qian, M. Li, Z.R. Zhou, H. Yang, and X.Y. Shi, Comparison of nano-indentation hardness to microhardness, Surf. Coat. Technol., 195(2005), No. 2-3, p. 264. doi: 10.1016/j.surfcoat.2004.07.108
      [54]
      S. Alvi, D.M. Jarzabek, M.G. Kohan, et al., Synthesis and mechanical characterization of a CuMoTaWV high-entropy film by magnetron sputtering, ACS Appl. Mater. Interfaces, 12(2020), No. 18, p. 21070. doi: 10.1021/acsami.0c02156
      [55]
      A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. Hard Mater., 57(2016), p. 50. doi: 10.1016/j.ijrmhm.2016.02.006
      [56]
      H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys, Mater. Des., 109(2016), p. 539. doi: 10.1016/j.matdes.2016.07.113
      [57]
      Q.Y. Li, H. Zhang, D.C. Li, et al., WxNbMoTa refractory high-entropy alloys fabricated by laser cladding deposition, Materials, 12(2019), No. 3, art. No. 533. doi: 10.3390/ma12030533
      [58]
      Z. Wang, Y. Yuan, K. Arshad, et al., Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys, Fusion Eng. Des., 125(2017), p. 496. doi: 10.1016/j.fusengdes.2017.04.082
      [59]
      T. Gräning, M. Klimenkov, M. Rieth, C. Heintze, and A. Möslang, Long-term stability of the microstructure of austenitic ODS steel rods produced with a carbon-containing process control agent, J. Nucl. Mater., 523(2019), p. 111. doi: 10.1016/j.jnucmat.2019.05.060
      [60]
      J. Svoboda, P. Bořil, J. Holzer, et al., Substantial improvement of high temperature strength of new-generation nano-oxide-strengthened alloys by addition of metallic yttrium, Materials, 15(2022), No. 2, art. No. 504. doi: 10.3390/ma15020504
      [61]
      S. Ukai, S. Ohtsuka, T. Kaito, et al., High-temperature strength characterization of advanced 9Cr–ODS ferritic steels, Mater. Sci. Eng. A, 510-511(2009), p. 115. doi: 10.1016/j.msea.2008.04.126
      [62]
      L. Fave, M.A. Pouchon, M. Döbeli, M. Schulte-Borchers, and A. Kimura, Helium ion irradiation induced swelling and hardening in commercial and experimental ODS steels, J. Nucl. Mater., 445(2014), No. 1-3, p. 235. doi: 10.1016/j.jnucmat.2013.11.004
      [63]
      C.Y. Lu, Z. Lu, X. Wang, et al., Enhanced radiation-tolerant oxide dispersion strengthened steel and its microstructure evolution under helium-implantation and heavy-ion irradiation, Sci. Rep., 7(2017), art. No. 40343. doi: 10.1038/srep40343

    Catalog


    • /

      返回文章
      返回