留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  610
  • HTML全文浏览量:  244
  • PDF下载量:  52
  • 被引次数: 0
Yiping Yu, Yuchen Cui, Jiangang He, Wei Mao, and Jikun Chen, Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 48-59. https://doi.org/10.1007/s12613-023-2712-8
Cite this article as:
Yiping Yu, Yuchen Cui, Jiangang He, Wei Mao, and Jikun Chen, Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 48-59. https://doi.org/10.1007/s12613-023-2712-8
引用本文 PDF XML SpringerLink
特约综述

3d过渡族铁基氧化物中的金属–绝缘体相变


  • 通讯作者:

    陈吉堃    E-mail: jikunchen@ustb.edu.cn

文章亮点

  • (1)聚焦于具有金属–绝缘体相变特性的铁基氧化物中铁离子价态的变化。
  • (2)系统地总结了铁基氧化物中金属–绝缘体相变特性和各自的相变机制。
  • (3)总结并提出了铁基氧化物的临界温度可调性及潜在相关电子应用。
  • 与传统半导体不同的是,3d过渡族金属氧化物中存在有金属-绝缘体相变(MIT),并伴随有电学、光学或磁性能的变化。在这些材料中,由于Fe离子具有丰富的价态,含有Fe离子的氧化物具有广泛可调的MIT特性,在电子应用方面具有潜在的应用前景。聚焦于六类具有典型MIT特性的铁基氧化物(Fe2.5+–Fe4+),铁基氧化物MIT中的共同特性在于其MIT通常伴随着与铁的价态相关的电荷有序或电荷歧化。本文综述这些具有MIT特性的铁基氧化物的MIT特性和各自的机制;从潜在相关电子应用的角度,总结了铁基氧化物的临界温度可调性及其电阻的变化规律,并进一步与其他具有MIT性能的材料进行了对比。其中,尤其值得注意的是稀土基四重钙钛矿结构的铁基氧化物在临界温度下触发下可实现大幅度电阻率突变,且其金属绝缘体相变温度可通过稀土组分在宽温度范围调控;但其材料合成依赖于GPa级压力等高温高压极端条件,如何降低该体系材料合成压力并实现放量制备有待进一步探索。
  • Invited Review

    Metal-to-insulator transitions in 3d-band correlated oxides containing Fe compositions

    + Author Affiliations
    • Metal-to-insulator transitions (MITs), which are achieved in 3d-band correlated transitional metal oxides, trigger abrupt variations in electrical, optical, and/or magnetic properties beyond those of conventional semiconductors. Among such material families, iron (Fe: 3d64s2)-containing oxides pique interest owing to their widely tunable MIT properties, which are associated with the various valence states of Fe. Their potential electronic applications also show promise, given the large abundance of Fe on Earth. Representative MIT properties triggered by critical temperature (TMIT) were reported for ReFe2O4 (Fe2.5+), ReBaFe2O5 (Fe2.5+), Fe3O4 (Fe2.67+), Re1/3Sr2/3FeO3 (Fe3.67+), ReCu3Fe4O12 (Fe3.75+), and Ca1−xSrxFeO3 (Fe4+) (where Re represents rare-earth elements). The common feature of MITs of these Fe-containing oxides is that they are usually accompanied by charge ordering transitions or disproportionation associated with the valence states of Fe. Herein, we review the material family of Fe-containing MIT oxides, their MIT functionalities, and their respective mechanisms. From the perspective of potentially correlated electronic applications, the tunability of the TMIT and its resultant resistive change in Fe-containing oxides are summarized and further compared with those of other materials exhibiting MIT functionality. In particular, we highlight the abrupt MIT and wide tunability of TMIT of Fe-containing quadruple perovskites, such as ReCu3Fe4O12. However, their effective material synthesis still needs to be further explored to cater to potential applications.
    • loading
    • [1]
      P. Schofield, A. Bradicich, R.M. Gurrola, et al., Harnessing the metal–insulator transition of VO2 in neuromorphic computing, Adv. Mater., 35(2023), No. 37, art. No. 2205294. doi: 10.1002/adma.202205294
      [2]
      J. Faucheu, E. Bourgeat-Lami, and V. Prevot, A review of vanadium dioxide as an actor of nanothermochromism: Challenges and perspectives for polymer nanocomposites, Adv. Eng. Mater., 21(2019), No. 2, art. No. 1800438. doi: 10.1002/adem.201800438
      [3]
      Z. Hiroi, Structural instability of the rutile compounds and its relevance to the metal–insulator transition of VO2, Prog. Solid State Chem., 43(2015), No. 1-2, p. 47. doi: 10.1016/j.progsolidstchem.2015.02.001
      [4]
      X.C. Zhou, H.F. Li, F.Q. Meng, et al., Revealing the role of hydrogen in electron-doping mottronics for strongly correlated vanadium dioxide, J. Phys. Chem. Lett., 13(2022), No. 34, p. 8078. doi: 10.1021/acs.jpclett.2c02001
      [5]
      X.C. Zhou, Y.C. Cui, Y.L. Shang, et al., Non-equilibrium spark plasma reactive doping enables highly adjustable metal-to-insulator transitions and improved mechanical stability for VO2, J. Phys. Chem. C, 127(2023), No. 5, p. 2639. doi: 10.1021/acs.jpcc.2c07631
      [6]
      S. Catalano, M. Gibert, J. Fowlie, J. Íñiguez, J.M. Triscone, and J. Kreisel, Rare-earth nickelates RNiO3: Thin films and heterostructures, Rep. Prog. Phys., 81(2018), No. 4, art. No. 046501. doi: 10.1088/1361-6633/aaa37a
      [7]
      J.R. Li, S. Ramanathan, and R. Comin, Carrier doping physics of rare earth perovskite nickelates RENiO3, Front. Phys., 10(2022), art. No. 834882. doi: 10.3389/fphy.2022.834882
      [8]
      J. Gainza, F. Serrano-Sánchez, J.E.F.S. Rodrigues, N.M. Nemes, J.L. Martínez, and J.A. Alonso, Metastable materials accessed under moderate pressure conditions (P≤3.5 GPa) in a piston-cylinder press, Materials, 14(2021), No. 8, art. No. 1946. doi: 10.3390/ma14081946
      [9]
      X.Y. Li, Z.A. Li, F.B. Yan, et al., Batch synthesis of rare-earth nickelates electronic phase transition perovskites via rare-earth processing intermediates, Rare Met., 41(2022), No. 10, p. 3495. doi: 10.1007/s12598-022-02033-x
      [10]
      J.K. Chen, Z.A. Li, H.L. Dong, et al., Pressure induced unstable electronic states upon correlated nickelates metastable perovskites as batch synthesized via heterogeneous nucleation, Adv. Funct. Mater., 30(2020), No. 23, art. No. 2000987. doi: 10.1002/adfm.202000987
      [11]
      A.M. Haghiri-Gosnet and J.P. Renard, CMR manganites: Physics, thin films and devices, J. Phys. D: Appl. Phys., 36(2003), No. 8, p. R127. doi: 10.1088/0022-3727/36/8/201
      [12]
      K. Dörr, Ferromagnetic manganites: Spin-polarized conduction versus competing interactions, J. Phys. D: Appl. Phys., 39(2006), No. 7, p. R125. doi: 10.1088/0022-3727/39/7/R01
      [13]
      W. Zhong, C.T. Au, and Y.W. Du, Review of magnetocaloric effect in perovskite-type oxides, Chin. Phys. B, 22(2013), No. 5, art. No. 057501. doi: 10.1088/1674-1056/22/5/057501
      [14]
      M. Itoh, J. Hashimoto, S. Yamaguchi, and Y. Tokura, Spin state and metal–insulator transition in LaCoO3 and RCoO3 (R=Nd, Sm and Eu), Physica B, 281-282(2000), p. 510. doi: 10.1016/S0921-4526(99)01044-3
      [15]
      Y. Kobayashi, Y. Sakurai, N. Tsuji, K. Sato, and K. Asai, Symmetry change of Co 3d orbital associated with the 500-K spin crossover accompanied by insulator-to-metal transition in LaCoO3, Phys. Rev. B, 98(2018), No. 11, art. No. 115154. doi: 10.1103/PhysRevB.98.115154
      [16]
      A. Podlesnyak, A. Mirmelstein, N. Golosova, et al., Magnetic properties and crystal-field excitations in RxSr1−xCoO3, Appl. Phys. A, 74(2002), No. 1, p. s1746.
      [17]
      V. Singh and J.J. Pulikkotil, Electronic phase transition and transport properties of Ti2O3, J. Alloys Compd., 658(2016), p. 430. doi: 10.1016/j.jallcom.2015.10.203
      [18]
      A.I. Poteryaev, A.I. Lichtenstein, and G. Kotliar, Nonlocal Coulomb interactions and metal–insulator transition in Ti2O3: A cluster LDA + DMFT approach, Phys. Rev. Lett., 93(2004), No. 8, art. No. 086401. doi: 10.1103/PhysRevLett.93.086401
      [19]
      V. Eyert, U. Schwingenschlögl, and U. Eckern, Charge order, orbital order, and electron localization in the Magnéli phase Ti4O7, Chem. Phys. Lett., 390(2004), No. 1-3, p. 151. doi: 10.1016/j.cplett.2004.04.015
      [20]
      E.J.W. Verwey, Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures, Nature, 144(1939), No. 3642, p. 327.
      [21]
      S. Konishi, K. Oka, H. Eisaki, K. Tanaka, and T.H. Arima, Growth of single-crystalline RFe2O4−δ (R = Y, Tm, Yb) by the floating zone melting method in a mixture of N2, H2, and CO2 gases and magnetic properties of the compounds, Cryst. Growth Des., 19(2019), No. 10, p. 5498. doi: 10.1021/acs.cgd.8b01393
      [22]
      Y.W. Long, T. Kawakami, W.T. Chen, et al., Pressure effect on intersite charge transfer in A-site-ordered double-perovskite-structure oxide, Chem. Mater., 24(2012), No. 11, p. 2235. doi: 10.1021/cm301267e
      [23]
      E.K. Hemery, G.V.M. Williams, and H.J. Trodahl, Anomalous thermoelectric power in SrFeO3−δ from charge ordering and phase separation, Phys. Rev. B, 75(2007), No. 9, art. No. 092403. doi: 10.1103/PhysRevB.75.092403
      [24]
      P. Karen, Chemistry and thermodynamics of the twin charge-ordering transitions in RBaFe2O5+w series, J. Solid State Chem., 177(2004), No. 1, p. 281. doi: 10.1016/j.jssc.2003.08.011
      [25]
      Y.J. Xie, M.D. Scafetta, E.J. Moon, A.L. Krick, R.J. Sichel-Tissot, and S.J. May, Electronic phase diagram of epitaxial La1−xSrxFeO3 films, Appl. Phys. Lett., 105(2014), No. 6, art. No. 062110. doi: 10.1063/1.4893139
      [26]
      K. Nagasawa, Crystal growth of VnO2n−1 (3 ≤ n ≤ 8) by the chemical transport reaction and electrical properties, Mater. Res. Bull., 6(1971), No. 9, p. 853. doi: 10.1016/0025-5408(71)90122-X
      [27]
      K. Nagasawa, Y. Bando, and T. Takada, Crystal growth of vanadium oxides by chemical transport, J. Cryst. Growth, 17(1972), p. 143. doi: 10.1016/0022-0248(72)90240-0
      [28]
      S. Kachi, K. Kosuge, and H. Okinaka, Metal–insulator transition in VnO2n−1, J. Solid State Chem., 6(1973), No. 2, p. 258. doi: 10.1016/0022-4596(73)90189-8
      [29]
      B. Stegemann, M. Klemm, S. Horn, and M. Woydt, Switching adhesion forces by crossing the metal–insulator transition in Magnéli-type vanadium oxide crystals, Beilstein J. Nanotechnol., 2(2011), p. 59. doi: 10.3762/bjnano.2.8
      [30]
      J. Blasco, S. Lafuerza, J. García, and G. Subías, Structural properties in RFe2O4 compounds (R = Tm, Yb, and Lu), Phys. Rev. B, 90(2014), No. 9, art. No. 094119. doi: 10.1103/PhysRevB.90.094119
      [31]
      D.H. Kim, J. Hwang, E. Lee, et al., Interplay between R 4f and Fe 3d states in charge-ordered RFe2O4 (R = Er, Tm, Lu), Phys. Rev. B, 87(2013), No. 18, art. No. 184409. doi: 10.1103/PhysRevB.87.184409
      [32]
      M. Tanaka, J. Akimitsu, Y. Inada, N. Kimizuka, I. Shindo, and K. Siratori, Conductivity and specific heat anomalies at the low temperature transition in the stoichiometric YFe2O4, Solid State Commun., 44(1982), No. 5, p. 687. doi: 10.1016/0038-1098(82)90583-X
      [33]
      D.K. Pratt, S. Chang, W. Tian, et al., Checkerboard to stripe charge ordering transition in TbBaFe2O5, Phys. Rev. B, 87(2013), No. 4, art. No. 045127. doi: 10.1103/PhysRevB.87.045127
      [34]
      D. Urushihara, T. Matsumura, K. Nakajima, et al., Charge ordering and successive phase transitions of mixed-valence iron oxide GdBaFe2O5, J. Solid State Chem., 282(2020), art. No. 121069. doi: 10.1016/j.jssc.2019.121069
      [35]
      Z. Kąkol, D. Owoc, J. Przewoźnik, et al., The effect of doping on global lattice properties of magnetite Fe3−xMexO4 (Me = Zn, Ti and Al), J. Solid State Chem., 192(2012), p. 120. doi: 10.1016/j.jssc.2012.04.001
      [36]
      V.A.M. Brabers, F. Walz, and H. Kronmüller, Impurity effects upon the Verwey transition in magnetite, Phys. Rev. B, 58(1998), No. 21, p. 14163. doi: 10.1103/PhysRevB.58.14163
      [37]
      S.K. Park, T. Ishikawa, Y. Tokura, J.Q. Li, and Y. Matsui, Variation of charge-ordering transitions in R1/3Sr2/3FeO3 (R = La, Pr, Nd, Sm, and Gd), Phys. Rev. B, 60(1999), No. 15, p. 10788. doi: 10.1103/PhysRevB.60.10788
      [38]
      J. Blasco, M.C. Sánchez, J. García, J. Stankiewicz, and J. Herrero-Martín, Growth of Sr2/3Ln1/3FeO3 (Ln = La, Pr, and Nd) single crystals by the floating zone technique, J. Cryst. Growth, 310(2008), No. 13, p. 3247. doi: 10.1016/j.jcrysgro.2008.03.021
      [39]
      I. Yamada, H. Etani, K. Tsuchida, et al., Control of bond-strain-induced electronic phase transitions in iron perovskites, Inorg. Chem., 52(2013), No. 23, p. 13751. doi: 10.1021/ic402344m
      [40]
      H. Etani, I. Yamada, K. Ohgushi, et al., Suppression of intersite charge transfer in charge-disproportionated perovskite YCu3Fe4O12, J. Am. Chem. Soc., 135(2013), No. 16, p. 6100. doi: 10.1021/ja312015j
      [41]
      H. Kawanaka, E. Kawawa, Y. Nishihara, et al., Magnetic properties of perovskite Ca1−xSrxFeO3, AIP Adv., 8(2018), No. 10, art. No. 101418. doi: 10.1063/1.5042695
      [42]
      J. Fujioka, S. Ishiwata, Y. Kaneko, Y. Taguchi, and Y. Tokura, Variation of charge dynamics upon the helimagnetic and metal-insulator transitions for perovskite AFeO3 (A= Sr and Ca), Phys. Rev. B, 85(2012), No. 15, art. No. 155141. doi: 10.1103/PhysRevB.85.155141
      [43]
      T. Takeda, R. Kanno, Y. Kawamoto, et al., Metal–semiconductor transition, charge disproportionation, and low-temperature structure of Ca1−xSrxFeO3 synthesized under high-oxygen pressure, Solid State Sci., 2(2000), No. 7, p. 673. doi: 10.1016/S1293-2558(00)01088-8
      [44]
      N. Kimizuka, A. Takenaka, Y. Sasada, and T. Katsura, A series of new compounds A3+Fe2O4 (A = Ho, Er, Tm, Yb, and Lu), Solid State Commun., 15(1974), No. 8, p. 1321. doi: 10.1016/0038-1098(74)91372-6
      [45]
      Y. Yamada, K. Kitsuda, S. Nohdo, and N. Ikeda, Charge and spin ordering process in the mixed-valence system LuFe2O4: Charge ordering, Phys. Rev. B, 62(2000), No. 18, p. 12167. doi: 10.1103/PhysRevB.62.12167
      [46]
      J. Blasco, S. Lafuerza, J. García, et al., Characterization of competing distortions in YFe2O4, Phys. Rev. B, 93(2016), No. 18, art. No. 184110. doi: 10.1103/PhysRevB.93.184110
      [47]
      M. Kishi, Y. Nakagawa, M. Tanaka, N. Kimizuka, and I. Shindo, Low-temperature transitions of RFe2O4, J. Magn. Magn. Mater., 31-34(1983), p. 807. doi: 10.1016/0304-8853(83)90695-9
      [48]
      P.M. Woodward and P. Karen, Mixed valence in YBaFe2O5, Inorg. Chem., 42(2003), No. 4, p. 1121. doi: 10.1021/ic026022z
      [49]
      J. Lindén, P. Karen, A. Kjekshus, J. Miettinen, T. Pietari, and M. Karppinen, Valence-state mixing and separation in SmBaFe2O5+w, Phys. Rev. B, 60(1999), No. 22, p. 15251. doi: 10.1103/PhysRevB.60.15251
      [50]
      P. Karen, P.M. Woodward, P.N. Santhosh, T. Vogt, P.W. Stephens, and S. Pagola, Verwey transition under oxygen loading in RBaFe2O5+w (R = Nd and Sm), J. Solid State Chem., 167(2002), No. 2, p. 480. doi: 10.1016/S0022-4596(02)99665-9
      [51]
      P. Karen, P.M. Woodward, J. Lindén, T. Vogt, A. Studer, and P. Fischer, Verwey transition in mixed-valence TbBaFe2O5: Two attempts to order charges, Phys. Rev. B, 64(2001), No. 21, art. No. 214405. doi: 10.1103/PhysRevB.64.214405
      [52]
      P.M. Woodward, E. Suard, and P. Karen, Structural tuning of charge, orbital, and spin ordering in double-cell perovskite series between NdBaFe2O5 and HoBaFe2O5, J. Am. Chem. Soc., 125(2003), No. 29, p. 8889. doi: 10.1021/ja034813+
      [53]
      D. Adler, Mechanisms for metal–nonmental transitions in transition-metal oxides and sulfides, Rev. Mod. Phys., 40(1968), No. 4, p. 714. doi: 10.1103/RevModPhys.40.714
      [54]
      J.P. Wright, J.P. Attfield, and P.G. Radaelli, Charge ordered structure of magnetite Fe3O4 below the Verwey transition, Phys. Rev. B, 66(2002), No. 21, art. No. 214422. doi: 10.1103/PhysRevB.66.214422
      [55]
      F. Delille, B. Dieny, J.B. Moussy, et al., Study of the electronic paraprocess and antiphase boundaries as sources of the demagnetisation phenomenon in magnetite, J. Magn. Magn. Mater., 294(2005), No. 1, p. 27. doi: 10.1016/j.jmmm.2004.12.018
      [56]
      M. Matsui, S. Todo, and S. Chikazumi, Specific heat and electrical conductivity of low temperature phase of magnetite, J. Phys. Soc. Jpn., 42(1977), No. 5, p. 1517. doi: 10.1143/JPSJ.42.1517
      [57]
      M. Ziese and H.J. Blythe, Magnetoresistance of magnetite, J. Phys.: Condens. Matter, 12(2000), No. 1, p. 13. doi: 10.1088/0953-8984/12/1/302
      [58]
      D. Varshney and A. Yogi, Structural and transport properties of stoichiometric Mn2+-doped magnetite: Fe3−xMnxO4, Mater. Chem. Phys., 128(2011), No. 3, p. 489. doi: 10.1016/j.matchemphys.2011.03.040
      [59]
      M. Onose, H. Takahashi, H. Sagayama, Y. Yamasaki, and S. Ishiwata, Complete phase diagram of Sr1−xLaxFeO3 with versatile magnetic and charge ordering, Phys. Rev. Mater., 4(2020), No. 11, art. No. 114420. doi: 10.1103/PhysRevMaterials.4.114420
      [60]
      J. Matsuno, T. Mizokawa, A. Fujimori, Y. Takeda, S. Kawasaki, and M. Takano, Different routes to charge disproportionation in perovskite-type Fe oxides, Phys. Rev. B, 66(2002), No. 19, art. No. 193103. doi: 10.1103/PhysRevB.66.193103
      [61]
      H. Shiraki, T. Saito, M. Azuma, and Y. Shimakawa, Metallic behavior in A-site-ordered perovskites ACu3V4O12 with A = Na+, Ca2+, and Y3+, J. Phys. Soc. Jpn., 77(2008), No. 6, art. No. 064705. doi: 10.1143/JPSJ.77.064705
      [62]
      T. Saito, S.B. Zhang, D. Khalyavin, P. Manuel, J.P. Attfield, and Y. Shimakawa, G-type antiferromagnetic order in the metallic oxide LaCu3Cr4O12, Phys. Rev. B, 95(2017), No. 4, art. No. 041109. doi: 10.1103/PhysRevB.95.041109
      [63]
      J. Sugiyama, H. Nozaki, I. Umegaki, et al., Static magnetic order in A-site ordered perovskite, LaCu3Cr4O12, probed with muon spin spectroscopy, Physics Procedia, 75(2015), p. 435. doi: 10.1016/j.phpro.2015.12.053
      [64]
      S.B. Zhang, T. Saito, M. Mizumaki, and Y. Shimakawa, Temperature-induced intersite charge transfer involving Cr ions in A-site-ordered perovskites ACu3Cr4O12 (A = La and Y), Chemistry, 20(2014), No. 31, p. 9510. doi: 10.1002/chem.201403692
      [65]
      J. Sánchez-Benítez, J.A. Alonso, M.J. Martínez-Lope, A. de Andrés, and M.T. Fernández-Díaz, Enhancement of the Curie temperature along the perovskite series RCu3Mn4O12 driven by chemical pressure of R3+ cations (R = rare earths), Inorg. Chem., 49(2010), No. 12, p. 5679. doi: 10.1021/ic100699u
      [66]
      T. Mizokawa, Y. Morita, T. Sudayama, et al., Metallic versus insulating behavior in the A-site ordered perovskite oxides ACu3Co4O12 (A = Ca and Y) controlled by Mott and Zhang-Rice physics, Phys. Rev. B, 80(2009), No. 12, art. No. 125105. doi: 10.1103/PhysRevB.80.125105
      [67]
      Y.W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka, and Y. Shimakawa, Temperature-induced A–B intersite charge transfer in an A-site-ordered LaCu3Fe4O12 perovskite, Nature, 458(2009), No. 7234, p. 60. doi: 10.1038/nature07816
      [68]
      Y.W. Long, T. Saito, T. Tohyama, K. Oka, M. Azuma, and Y. Shimakawa, Intermetallic charge transfer in A-site-ordered double perovskite BiCu3Fe4O12, Inorg. Chem., 48(2009), No. 17, p. 8489. doi: 10.1021/ic901128k
      [69]
      I. Yamada, H. Etani, M. Murakami, et al., Charge-order melting in charge-disproportionated perovskite CeCu3Fe4O12, Inorg. Chem., 53(2014), No. 21, p. 11794. doi: 10.1021/ic502138v
      [70]
      I. Yamada, K. Shiro, H. Etani, et al., Valence transitions in negative thermal expansion material SrCu3Fe4O12, Inorg. Chem., 53(2014), No. 19, p. 10563. doi: 10.1021/ic501665c
      [71]
      I. Yamada, K. Takata, N. Hayashi, et al., A perovskite containing quadrivalent iron as a charge-disproportionated ferrimagnet, Angew. Chem. Int. Ed., 47(2008), No. 37, p. 7032. doi: 10.1002/anie.200801482
      [72]
      H. Watanabe, Magnetic properties of perovskites containing strontium I. strontium-rich ferrites and cobaltites, J. Phys. Soc. Jpn., 12(1957), No. 5, p. 515. doi: 10.1143/JPSJ.12.515
      [73]
      F. Kanamaru, H. Miyamoto, Y. Mimura, et al., Synthesis of a new perovskite CaFeO3, Mater. Res. Bull., 5(1970), No. 4, p. 257. doi: 10.1016/0025-5408(70)90121-2
      [74]
      J. Matsuno, T. Mizokawa, A. Fujimori, et al., Photoemission and Hartree-Fock studies of oxygen-hole ordering in charge-disproportionated La1−xSrxFeO3, Phys. Rev. B, 60(1999), No. 7, p. 4605. doi: 10.1103/PhysRevB.60.4605
      [75]
      J.K. Chen, H.Y. Hu, J.O. Wang, et al., Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates, Mater. Horiz., 6(2019), No. 4, p. 788. doi: 10.1039/C9MH00008A
      [76]
      M. Nakano, K. Shibuya, D. Okuyama, et al., Collective bulk carrier delocalization driven by electrostatic surface charge accumulation, Nature, 487(2012), No. 7408, p. 459. doi: 10.1038/nature11296
      [77]
      V.N. Andreev and V.A. Klimov, Specific features of electrical conductivity of V3O5 single crystals, Phys. Solid State, 53(2011), No. 12, p. 2424. doi: 10.1134/S106378341112002X
      [78]
      J.L. Hodeau and M. Marezio, The crystal structure of V4O7 at 120° K, J. Solid State Chem., 23(1978), No. 3-4, p. 253. doi: 10.1016/0022-4596(78)90072-5
      [79]
      M. Iihoshi, M. Goto, Y. Kosugi, and Y. Shimakawa, Cascade charge transitions of unusually high and mixed valence Fe3.5+ in the A-site layer-ordered double perovskite SmBaFe2O6, J. Am. Chem. Soc., 145(2023), No. 19, p. 10756. doi: 10.1021/jacs.3c01654

    Catalog


    • /

      返回文章
      返回