Cite this article as:

Shaolong Sheng, Yanxin Qiao, Ruzong Zhai, Mingyue Sun, and Bin Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp.2386-2396. https://dx.doi.org/10.1007/s12613-023-2714-6
Shaolong Sheng, Yanxin Qiao, Ruzong Zhai, Mingyue Sun, and Bin Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp.2386-2396. https://dx.doi.org/10.1007/s12613-023-2714-6
引用本文 PDF XML SpringerLink

316LN-Mn奥氏体不锈钢的热加工图和动态再结晶行为

摘要: 316LN-Mn奥氏体不锈钢因其优越的低温力学性能,成为了制造聚变工程实验堆线圈外壳的最佳材料。然而,其在高温加工时的变形抗力很大,在锻造过程中很容易发生开裂现象,对实际生产造成了很大的挑战。本文旨在通过热压缩实验,分析变形温度和应变速率等变形参数对高温变形条件下材料流变行为的影响,建立热变形本构方程和动态再结晶的数学模型,绘制不同变形条件下316LN-Mn奥氏体不锈钢的热加工图。借助各种表征方式对不同变形条件下的样品进行组织观察,分析各参数对该材料微观组织的影响,从而揭示材料在热变形过程中的软化机制。研究结果表明,流变应力随着变形温度的升高和应变速率的降低而不断下降。本构方程建立了各变形参数之间的关系,并得出该材料的变形激活能为497.92 kJ/mol。通过热加工图的构建,发现316LN-Mn奥氏体不锈钢的最佳热加工窗口是:变形温度为1107–1160°C、应变速率为0.005–0.026 s-1。该材料的动态再结晶行为是以不连续动态再结晶(discontinuous dynamic recrystallization , DDRX)为主,并伴有连续动态再结晶(continuous dynamic recrystallization , CDRX))为机制的,而且组织中孪晶界的形成也促进了动态再结晶的形核。

 

Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel

Abstract: The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates. The microstructural evolutions were also studied using electron backscatter diffraction. The flow stress decreases with the increasing temperature and decreasing strain rate. A constitutive equation was established to characterize the relationship among the deformation parameters, and the deformation activation energy was calculated to be 497.92 kJ/mol. Processing maps were constructed to describe the appropriate processing window, and the optimum processing parameters were determined at a temperature of 1107–1160°C and a strain rate of 0.005–0.026 s−1. Experimental results showed that the main nucleation mechanism is discontinuous dynamic recrystallization (DDRX), followed by continuous dynamic recrystallization (CDRX). In addition, the formation of twin boundaries facilitated the nucleation of dynamic recrystallization.

 

/

返回文章
返回