留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(7)

数据统计

分享

计量
  • 文章访问数:  1298
  • HTML全文浏览量:  232
  • PDF下载量:  46
  • 被引次数: 0
Yi Tian, Zhiguang Fu, Xiaosheng Zhu, Chunjing Zhan, Jinwei Hu, Li Fan, Chaojun Song, Qian Yang, Yu Wang, and Mei Shi, Establishment of NaLuF4:15%Tb-based low dose X-PDT agent and its application on efficient antitumor therapy, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 599-610. https://doi.org/10.1007/s12613-023-2717-3
Cite this article as:
Yi Tian, Zhiguang Fu, Xiaosheng Zhu, Chunjing Zhan, Jinwei Hu, Li Fan, Chaojun Song, Qian Yang, Yu Wang, and Mei Shi, Establishment of NaLuF4:15%Tb-based low dose X-PDT agent and its application on efficient antitumor therapy, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 599-610. https://doi.org/10.1007/s12613-023-2717-3
引用本文 PDF XML SpringerLink
研究论文

高效X射线激发光动力治疗纳米系统构筑及低剂量下治疗策略研究



  • 通讯作者:

    杨倩    E-mail: 12154521@qq.com

    王宇    E-mail: wangyufmmu@163.com

    石梅    E-mail: mshi82@fmmu.edu.cn

文章亮点

  • (1) 成功合成了具有高光转换效率的纳米粒子,并构建新型X射线激发光动力学治疗系统
  • (2) 该系统实现了低剂量X射线照射下高效的抗肿瘤治疗效果
  • (3) 该系统治疗可以激活小鼠的抗肿瘤免疫并抑制远处肿瘤的生长
  • X射线激发光动力学治疗(X-ray excited PDT,X-PDT)采用可被X射线激发的纳米发光材料(XLNPs)产生的可见光作为内部光源,激发与之耦合的光敏剂产生单态氧进行光动力治疗,得到了极大关注。X-PDT通过X射线激发被负载光敏剂的纳米颗粒发光,将能量传递给光敏剂产生肿瘤的光动力效应,产生ROS,促使肿瘤细胞凋亡。同时,一定X射线剂量下的X-PDT被视作放疗与光动力治疗的联用,可发挥二者的协同效果,实现高效深部肿瘤无创治疗。本文中采用共沉淀法合成NaLuF4:15%Tb3+(NLF)作为X射线激发的发光纳米粒子并与光敏剂MC540通过表面吸附耦合,成功构建NLF-MC540的X-PDT系统。对该体系的X-PDT治疗效果进行体内外评价后,进一步探索了NLF-MC540的X-PDT系统对肿瘤免疫的激活能力。最终成功制备纳米发光颗粒NLF,可将X射线高效地转换为波长545 nm的可见光。以10:1质量比构建NLF-MC540治疗系统;该系统的体外实验中,在较低的剂量0.1Gy–0.3Gy下NLF-MC540可抑制CT26细胞存活率最低达24%,体内实验中,0.1 Gy射线激发的X-PDT治疗组抑瘤率89.5% ± 5.7% ,治疗效果明显 低于X-PDT 文献报道的最低剂量,远低于临床常用的常规放疗剂量。各组别荷瘤小鼠实施X-PDT后,小鼠瘤体切片染色发现该组内瘤体中有大量Ly6G+、CD8+、CD11c+细胞浸润;治疗组小鼠体内分泌IFN-γ、TNF-α细胞因子的免疫细胞的水平升高,血清内两种细胞因子的水平同样发生了升高,且单侧的X-PDT照射能抑制远处肿瘤的生长,我们得知NLF-MC540系统在0.1 Gy低剂量X-PDT过程中发生了肿瘤局部的急性炎症反应。且低剂量X-PDT成功激活了小鼠的肿瘤免疫能力,提高了对肿瘤细胞杀伤能力。最终本研究成功构建新型 X-PDT 系统,该系统实现了低剂量X射线照射与光动力治疗的协同作用,能降低辐射产生的正常组织损伤;该系统的X-PDT治疗可以激活小鼠的抗肿瘤免疫并抑制远处肿瘤的生长。
  • Research Article

    Establishment of NaLuF4:15%Tb-based low dose X-PDT agent and its application on efficient antitumor therapy

    + Author Affiliations
    • X-ray excited photodynamic therapy (X-PDT) is the bravo answer of photodynamic therapy (PDT) for deep-seated tumors, as it employs X-ray as the irradiation source to overcome the limitation of light penetration depth. However, high X-ray irradiation dose caused organ lesions and side effects became the major barrier to X-PDT application. To address this issue, this work employed a classical co-precipitation reaction to synthesize NaLuF4:15%Tb3+ (NLF) with an average particle size of (23.48 ± 0.91) nm, which was then coupled with the photosensitizer merocyanine 540 (MC540) to form the X-PDT system NLF–MC540 with high production of singlet oxygen. The system could induce antitumor efficacy to about 24% in relative low dose X-ray irradiation range (0.1–0.3 Gy). In vivo, when NLF–MC540 irradiated by 0.1 Gy X-ray, the tumor inhibition percentage reached 89.5% ± 5.7%. The therapeutic mechanism of low dose X-PDT was found. A significant increase of neutrophils in serum was found on the third day after X-PDT. By immunohistochemical staining of tumor sections, the Ly6G+, CD8+, and CD11c+ cells infiltrated in the tumor microenvironment were studied. Utilizing the bilateral tumor model, the NLF–MC540 with 0.1 Gy X-ray irradiation could inhibit both the primary tumor and the distant tumor growth. Detected by enzyme linked immunosorbent assay (ELISA), two cytokines IFN-γ and TNF-α in serum were upregulated 7 and 6 times than negative control, respectively. Detected by enzyme linked immune spot assay (ELISPOT), the number of immune cells attributable to the IFN-γ and TNF-α levels in the group of low dose X-PDT were 14 and 6 times greater than that in the negative control group, respectively. Thus, it conclude that low dose X-PDT system could successfully upregulate the levels of immune cells, stimulate the secretion of cytokines (especially IFN-γ and TNF-α), activate antitumor immunity, and finally inhibit colon tumor growth.
    • loading
    • [1]
      R.S. Zheng, S.W. Zhang, K.X. Sun, et al., Cancer statistics in China, 2016, Chin. J. Oncol., 45(2023), No. 3, p. 212.
      [2]
      D.B. Ding, H.H. Zhong, R.P. Liang, et al., Multifunctional nanodrug mediates synergistic photodynamic therapy and MDSCs-targeting immunotherapy of colon cancer, Adv. Sci., 8(2021), No. 14, art. No. e2100712. doi: 10.1002/advs.202100712
      [3]
      J.H. Correia, J.A. Rodrigues, S. Pimenta, T. Dong, and Z.C. Yang, Photodynamic therapy review: Principles, photosensitizers, applications, and future directions, Pharmaceutics, 13(2021), No. 9, art. No. 1332. doi: 10.3390/pharmaceutics13091332
      [4]
      Y.J. Hou, X.X. Yang, R.Q. Liu, et al., Pathological mechanism of photodynamic therapy and photothermal therapy based on nanoparticles, Int. J. Nanomed., 15(2020), p. 6827. doi: 10.2147/IJN.S269321
      [5]
      S. Clement, W. Deng, E. Camilleri, B.C. Wilson, and E.M. Goldys, X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: Determination of singlet oxygen quantum yield, Sci. Rep., 6(2016), art. No. 19954. doi: 10.1038/srep19954
      [6]
      C.K. Lim, J. Heo, S. Shin, et al., Nanophotosensitizers toward advanced photodynamic therapy of Cancer, Cancer Lett., 334(2013), No. 2, p. 176. doi: 10.1016/j.canlet.2012.09.012
      [7]
      G.D. Wang, H.T. Nguyen, H.M. Chen, et al., X-ray induced photodynamic therapy: A combination of radiotherapy and photodynamic therapy, Theranostics, 6(2016), No. 13, p. 2295. doi: 10.7150/thno.16141
      [8]
      W. Chen and J. Zhang, Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment, J. Nanosci. Nanotechnol., 6(2006), No. 4, p. 1159. doi: 10.1166/jnn.2006.327
      [9]
      H.M. Chen, G.D. Wang, Y.J. Chuang, et al., Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment, Nano Lett., 15(2015), No. 4, p. 2249. doi: 10.1021/nl504044p
      [10]
      L. Huang, Z. Li, Y. Zhao, et al., Enhancing photodynamic therapy through resonance energy transfer constructed near-infrared photosensitized nanoparticles, Adv. Mater., 29(2017), No. 28, art. No. 201604789.
      [11]
      L.R. He, X.J. Yu, and W.W. Li, Recent progress and trends in X-ray-induced photodynamic therapy with low radiation doses, ACS Nano, 16(2022), No. 12, p. 19691. doi: 10.1021/acsnano.2c07286
      [12]
      S.K. Liu, L.Y. Fang, H. Ding, et al., Alternative strategy to optimize cerium oxide for enhanced X-ray-induced photodynamic therapy, ACS Nano, 16(2022), No. 12, p. 20805. doi: 10.1021/acsnano.2c08047
      [13]
      H. Wang, B. Lv, Z.M. Tang, et al., Scintillator-based nanohybrids with sacrificial electron prodrug for enhanced X-ray-induced photodynamic therapy, Nano Lett., 18(2018), No. 9, p. 5768. doi: 10.1021/acs.nanolett.8b02409
      [14]
      X.F. Zhang, B. Lan, S.C. Wang, et al., Low-dose X-ray excited photodynamic therapy based on NaLuF4:Tb 3 +-rose Bengal nanocomposite, Bioconjugate Chem., 30(2019), No. 8, p. 2191.
      [15]
      W.L. Zhang, X.F. Zhang, Y.L. Shen, et al., Ultra-high FRET efficiency NaGdF4:Tb3+-rose Bengal biocompatible nanocomposite for X-ray excited photodynamic therapy application, Biomaterials, 184(2018), p. 31. doi: 10.1016/j.biomaterials.2018.09.001
      [16]
      L. Song, P.P. Li, W. Yang, et al., Low-dose X-ray activation of W(VI)-doped persistent luminescence nanoparticles for deep-tissue photodynamic therapy, Adv. Funct. Mater., 28(2018), No. 18, art. No. 1707496. doi: 10.1002/adfm.201707496
      [17]
      X.S. Zhu, Y. Tian, L. Dai, et al., The influence of hydrophilic decoration on X-ray excited luminescence nanoparticles to singlet oxygen production, Nano, 15(2020), No. 7, art. No. 2050092. doi: 10.1142/S1793292020500927
      [18]
      W.J. Xu, C. Pang, C.J. Song, et al., Black porous silicon as a photothermal agent and immunoadjuvant for efficient antitumor immunotherapy, Acta Biomater., 152(2022), p. 473. doi: 10.1016/j.actbio.2022.08.073
      [19]
      N. Lange, W. Szlasa, J. Saczko, and A. Chwiłkowska, Potential of cyanine derived dyes in photodynamic therapy, Pharmaceutics, 13(2021), No. 6, art. No. 818. doi: 10.3390/pharmaceutics13060818
      [20]
      R. Tenchov, J.M. Sasso, X.M. Wang, W.S. Liaw, C.A. Chen, and Q.A. Zhou, Exosomes–nature’s lipid nanoparticles, a rising star in drug delivery and diagnostics, ACS Nano, 16(2022), No. 11, p. 17802. doi: 10.1021/acsnano.2c08774
      [21]
      J.P. Scaffidi, M.K. Gregas, B. Lauly, Y. Zhang, and T. Vo-Dinh, Activity of psoralen-functionalized nanoscintillators against cancer cells upon X-ray excitation, ACS Nano, 5(2011), No. 6, p. 4679. doi: 10.1021/nn200511m
      [22]
      L. Ma, X.J. Zou, B. Bui, W. Chen, K.H. Song, and T. Solberg, X-ray excited ZnS:Cu, Co afterglow nanoparticles for photodynamic activation, Appl. Phys. Lett., 105(2014), No. 1, art. No. 013702. doi: 10.1063/1.4890105
      [23]
      Z.Z. Chen, L.C. Wang, D. Manoharan, et al., Low dose of X-ray-excited long-lasting luminescent concave nanocubes in highly passive targeting deep-seated hepatic tumors, Adv. Mater., 31(2019), No. 49, art. No. e1905087. doi: 10.1002/adma.201905087
      [24]
      Y.H. Zheng, G.F. Yin, V. Le, et al., Photodynamic-therapy activates immune response by disrupting immunity homeostasis of tumor cells, which generates vaccine for cancer therapy, Int. J. Biol. Sci., 12(2016), No. 1, p. 120. doi: 10.7150/ijbs.12852
      [25]
      Y.Y. Huang, M. Tanaka, D. Vecchio, et al., Photodynamic therapy induces an immune response against a bacterial pathogen, Expert Rev. Clin. Immunol., 8(2012), No. 5, p. 479. doi: 10.1586/eci.12.37
      [26]
      S.S. He, P.H. Cheng, and K.Y. Pu, Activatable near-infrared probes for the detection of specific populations of tumour-infiltrating leukocytes in vivo and in urine, Nat. Biomed. Eng., 7(2023), No. 3, p. 281. doi: 10.1038/s41551-023-01009-1
      [27]
      D. Geh, J. Leslie, R. Rumney, H.L. Reeves, T.G. Bird, and D.A. Mann, Neutrophils as potential therapeutic targets in hepatocellular carcinoma, Nat. Rev. Gastroenterol. Hepatol., 19(2022), No. 4, p. 257. doi: 10.1038/s41575-021-00568-5
      [28]
      R.D. Xue, Q.M. Zhang, Q. Cao, et al., Liver tumour immune microenvironment subtypes and neutrophil heterogeneity, Nature, 612(2022), No. 7938, p. 141. doi: 10.1038/s41586-022-05400-x
      [29]
      T. Vorup-Jensen and R.K. Jensen, Structural immunology of complement receptors 3 and 4, Front. Immunol., 9(2018), art. No. 2716. doi: 10.3389/fimmu.2018.02716
      [30]
      Q.C. Deng, Y.Y. Luo, C. Chang, H.J. Wu, Y. Ding, and R. Xiao, The emerging epigenetic role of CD8+ T cells in autoimmune diseases: A systematic review, Front. Immunol., 10(2019), art. No. 856. doi: 10.3389/fimmu.2019.00856
      [31]
      F. Klug, H. Prakash, P.E. Huber, et al., Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T cell immunotherapy, Cancer Cell, 24(2013), No. 5, p. 589. doi: 10.1016/j.ccr.2013.09.014
      [32]
      S. Sharma, N. Singla, V.D. Chadha, and D.K. Dhawan, A concept of radiation hormesis: Stimulation of antioxidant machinery in rats by low dose ionizing radiation, Hell. J. Nucl. Med., 22(2019), No. 1, p. 43.
      [33]
      P. Gao, J.Y. Rong, H.S. Pu, et al., Sparse view cone beam X-ray luminescence tomography based on truncated singular value decomposition, Opt. Express, 26(2018), No. 18, p. 23233. doi: 10.1364/OE.26.023233
      [34]
      N.R. Maimela, S.S. Liu, and Y. Zhang, Fates of CD8+ T cells in Tumor Microenvironment, Comput. Struct. Biotechnol. J., 17(2019), p. 1. doi: 10.1016/j.csbj.2018.11.004
      [35]
      O. Draghiciu, M. Walczak, B.N. Hoogeboom, et al., Therapeutic immunization and local low-dose tumor irradiation, a reinforcing combination, Int. J. Cancer, 134(2014), No. 4, p. 859. doi: 10.1002/ijc.28418
      [36]
      B. Ji, M.J. Wei, and B. Yang, Recent advances in nanomedicines for photodynamic therapy (PDT)-driven cancer immunotherapy, Theranostics, 12(2022), No. 1, p. 434. doi: 10.7150/thno.67300
      [37]
      S. Jaillon, A. Ponzetta, D. Di Mitri, A. Santoni, R. Bonecchi, and A. Mantovani, Neutrophil diversity and plasticity in tumour progression and therapy, Nat. Rev. Cancer, 20(2020), No. 9, p. 485. doi: 10.1038/s41568-020-0281-y

    Catalog


    • /

      返回文章
      返回