留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(13)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  366
  • HTML全文浏览量:  114
  • PDF下载量:  33
  • 被引次数: 0
Bojian Chen, Tao Jiang, Jing Wen, Guangdong Yang, Tangxia Yu, Fengxiang Zhu,  and Peng Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 498-507. https://doi.org/10.1007/s12613-023-2719-1
Cite this article as:
Bojian Chen, Tao Jiang, Jing Wen, Guangdong Yang, Tangxia Yu, Fengxiang Zhu,  and Peng Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 498-507. https://doi.org/10.1007/s12613-023-2719-1
引用本文 PDF XML SpringerLink
研究论文

基于熔剂性球团的高铬型钒钛磁铁矿高炉全球团炉料结构优化及软化–熔化行为


  • 通讯作者:

    姜涛    E-mail: jiangt@smm.neu.edu.cn

    温婧    E-mail: wenjing@smm.neu.edu.cn

文章亮点

  • (1) 获得了70%熔剂性球团和30%酸性球团的最优全球团炉料结构。
  • (2) 对比分析了单一球团和组合球团的软化–熔化行为。
  • (3) 明确了高铬型钒钛磁铁矿和普通铁矿、碱度之间的偏析是综合炉料获得较优软化–熔化性能的主要原因。
  • 高铬型钒钛磁铁矿是待开发的重要多金属伴生资源,目前高炉炼铁是高效利用它的有效途径之一。全球团炉料结构是高炉减少CO2排放量的未来发展的趋势之一。本研究结合钒钛高炉的生产数据,对高铬型钒钛磁铁矿全球团炉料结构的软化–熔化行为进行了探索并获得了最优的全球团炉料结构。结果表明,70%熔剂型球团与30%酸性球团矿的炉料结构获得了较好的软化–熔化性能。与单一炉料相比,该炉料方案的软化–熔化特征温度更高,软熔区间从307°C先升高至362°C后降低至282°C,最大压差由26.76 kPa降低至19.01 kPa,透气性指数由4643.5 kPa·°C降低至2446.8 kPa·°C。综合炉料的软化–熔化性能提升明显。软化过程中酸性球团起到抵抗载荷的作用,熔化过程中组合炉料中的熔剂型球团表现出更高的渣系熔点,达到提高熔化特征温度的效果。渣系成分的均质性和部分炉渣过还原产生的TiC导致了单一炉料透气性的恶化。综合炉料中高铬型钒钛磁铁矿和普通铁矿间的偏析以及酸性球团和熔剂性球团间的偏析是综合炉料软化–熔化性能较优的主要原因。
  • Research Article

    High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets

    + Author Affiliations
    • High-chromium vanadium–titanium magnetite (HVTM) is a crucial polymetallic-associated resource to be developed. The all-pellet operation is a blast furnace trend that aims to reduce carbon dioxide emissions in the future. By referencing the production data of vanadium–titanium magnetite blast furnaces, this study explored the softening–melting behavior of high-chromium vanadium–titanium magnetite and obtained the optimal integrated burden based on flux pellets. The results show that the burden with a composition of 70wt% flux pellets and 30wt% acid pellets exhibits the best softening–melting properties. In comparison to that of the single burden, the softening–melting characteristic temperature of this burden composition was higher. The melting interval first increased from 307 to 362°C and then decreased to 282°C. The maximum pressure drop (ΔPmax) decreased from 26.76 to 19.01 kPa. The permeability index (S) dropped from 4643.5 to 2446.8 kPa·°C. The softening–melting properties of the integrated burden were apparently improved. The acid pellets played a role in withstanding load during the softening process. The flux pellets in the integrated burden exhibited a higher slag melting point, which increased the melting temperature during the melting process. The slag homogeneity and the TiC produced by over-reduction led to the gas permeability deterioration of the single burden. The segregation of the flux and acid pellets in the HVTM proportion and basicity mainly led to the better softening–melting properties of the integrated burden.
    • loading
    • [1]
      R.Q. Zeng, W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Influence and mechanism of CaO on the oxidation induration of hongge vanadium titanomagnetite pellets, ISIJ Int., 60(2020), No. 10, p. 2199. doi: 10.2355/isijinternational.ISIJINT-2020-091
      [2]
      S.T. Yang, M. Zhou, X.X. Xue, T. Jiang, and C.Y. Sun, Isothermal reduction kinetics of chromium-bearing vanadium–titanium sinter reduced with CO gas at 1173 K, JOM, 71(2019), No. 8, p. 2812. doi: 10.1007/s11837-019-03533-5
      [3]
      L.H. Zhang, S.T. Yang, W.D. Tang, and X.X. Xue, Investigations of MgO on sintering performance and metallurgical property of high-chromium vanadium-titanium magnetite, Minerals, 9(2019), No. 5, art. No. 324. doi: 10.3390/min9050324
      [4]
      B.J. Chen, J. Wen, T. Jiang, L. Li, G.D. Yang, and T. Zhao, Phase evolution behavior and oxidation induration mechanism of high-chromium vanadium–titanium magnetite flux pellets, Metall. Mater. Trans. B, 53(2022), No. 1, p. 178. doi: 10.1007/s11663-021-02353-w
      [5]
      G.J. Cheng, X.F. Zhang, Z.X. Gao, H. Yang, and X.X. Xue, Isothermal reduction behavior and kinetics of Russian high-chromium vanadium-titanium magnetite pellets under gas atmospheres of CO–CO2–N2 and CO–N2 at 873 K–1173 K, Energy Sources Part A, 44(2022), No. 2, p. 5490. doi: 10.1080/15567036.2020.1795309
      [6]
      H.L. Song, J.P. Zhang, and X.X. Xue, Kinetics on chromium-bearing vanadia-titania magnetite smelting with high-basicity pellet, Processes, 9(2021), No. 5, art. No. 811. doi: 10.3390/pr9050811
      [7]
      W.Q. Xu, B. Wan, T.Y. Zhu, and M.P. Shao, CO2 emissions from China’s iron and steel industry, J. Cleaner Prod., 139(2016), p. 1504. doi: 10.1016/j.jclepro.2016.08.107
      [8]
      W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Cleaner Prod., 233(2019), No. 1, p.1314. doi: 10.1016/j.jclepro.2019.06.180
      [9]
      Z.C. Guo and Z.X. Fu, Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China, Energy, 35(2010), No. 11, p. 4356. doi: 10.1016/j.energy.2009.04.008
      [10]
      Y. Matsui, A. Sato, T. Oyama, T. Matsuo, S. Kitayama, and R. Ono, All pellets operation in Kobe No. 3 blast furnace under intensive coal injection, ISIJ Int., 43(2003), No. 2, p. 166. doi: 10.2355/isijinternational.43.166
      [11]
      N. Eklund, B. Lindblom, J. Wikström, and B. Björkman, Operation at high pellet ratio and without external slag formers–trials in an experimental blast furnace, Steel Res. Int., 80(2009), No. 6, p. 379. doi: 10.2374/SRI09SP025
      [12]
      P.K. Gupta, A.S. Rao, V.R. Sekhar, M. Ranjan, and T.K. Naha, Burden distribution control and its optimisation under high pellet operation, Ironmaking Steelmaking, 37(2010), No. 3, p. 235. doi: 10.1179/174328109X422566
      [13]
      A. Agrawal, Blast furnace performance under varying pellet proportion, Trans. Indian Inst. Met., 72(2019), No. 3, p. 777. doi: 10.1007/s12666-018-1530-6
      [14]
      C.C. Lan, S.H. Zhang, X.J. Liu, Q. Lyu, and M.F. Jiang, Change and mechanism analysis of the softening–melting behavior of the iron-bearing burden in a hydrogen-rich blast furnace, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14255. doi: 10.1016/j.ijhydene.2020.03.143
      [15]
      Z.M. Chen, S.X. Ye, S.H. Geng, et al., Softening and melting performance of mixed burden under the simulated hydrogen-rich blast furnace atmosphere, Ironmaking Steelmaking 50(2023), No. 5, p. 538.
      [16]
      A. Agrawal, D.J. Gavel, M.B. Shaik, S. Dwarapudi, and I. Paul, Optimum pellet basicity desirable for blast furnace operation, J. Inst. Eng. India Ser. D, 102(2021), No. 1, p. 87. doi: 10.1007/s40033-021-00258-1
      [17]
      G.L. Wang, J. Kang, J.L. Zhang, et al., Softening–melting behavior of mixed burden based on low-magnesium sinter and fluxed pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 621. doi: 10.1007/s12613-020-2047-7
      [18]
      A.V. Pavlov, O.P. Onorin, N.A. Spirin, and A.A. Polinov, MMK blast furnace operation with a high proportion of pellets in a charge. Part 1, Metallurgist, 60(2016), No. 5-6, p. 581. doi: 10.1007/s11015-016-0335-2
      [19]
      A.V. Pavlov, O.P. Onorin, N.A. Spirin and A.A. Polinov, MMK blast furnace operation with a high proportion of pellets in a charge. Part 2, Metallurgist, 60(2016), No. 7-8, p. 653. doi: 10.1007/s11015-016-0346-z
      [20]
      I.S. Bersenev, V.V. Bragin, A.A. Ugarov, et al., Improvement of technical and economic performance of blast-furnace smelting by pellet composition optimization, Steel Transl., 50(2020), No. 3, p. 171. doi: 10.3103/S0967091220030031
      [21]
      A. Chakrabarty, R. Biswas, S. Basu, and S. Nag, Characterisation of binary mixtures of pellets and sinter for DEM simulations, Adv. Powder Technol., 33(2022), No. 1, art. No. 103358. doi: 10.1016/j.apt.2021.11.010
      [22]
      Z.J. Zhao, H. Saxén, Y.J. Liu, X.F. She, and Q.G. Xue, Numerical study on the influence of pellet proportion on burden distribution in blast furnace, Ironmaking Steelmaking, 50(2023), No. 6, p. 613. doi: 10.1080/03019233.2022.2140254
      [23]
      H. Wei, D.N. Mondal, H. Saxén, and Y.W. Yu, Numerical investigation of the radial ore-to-coke ratio in the blast furnace throat during nonuniform burden descent, Steel Res. Int., 94(2023), No. 3, art.No. 2200290. doi: 10.1002/srin.202200290
      [24]
      R. Roeplal, Y.S. Pang, A. Adema, J. van der Stel, and D. Schott, Modelling of phenomena affecting blast furnace burden permeability using the discrete element method (DEM)–A review, Powder Technol., 415(2023), art. No. 118161. doi: 10.1016/j.powtec.2022.118161
      [25]
      G.J. Cheng, X.X. Xue, Z.X. Gao, T. Jiang, H. Yang, and P.N. Duan, Effect of Cr2O3 on the reduction and smelting mechanism of high-chromium vanadium–titanium magnetite pellets, ISIJ Int., 56(2016), No. 11, p. 1938. doi: 10.2355/isijinternational.ISIJINT-2016-234
      [26]
      M.R. Yang, J.Y. Xiang, C.G. Bai, X.G. Zhou, Z.C. Liu, and X.W. Lv, Solid-state reaction and diffusion behaviors of CaFe2O4 and TiO2 at 1373 K to 1473 K, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1436. doi: 10.1007/s11663-021-02111-y
      [27]
      K.K. Bai, L.C. Liu, Y.Z. Pan, H.B. Zuo, J.S. Wang, and Q.G. Xue, A review: Research progress of flux pellets and their application in China, Ironmaking Steelmaking, 48(2021), No. 9, p. 1048. doi: 10.1080/03019233.2021.1911770
      [28]
      B.B. Lyu, G. Wang, L.D. Zhao, H.B. Zuo, Q.G. Xue, and J.S. Wang, Effect of atmosphere and basicity on softening–melting behavior of primary slag formation in cohesive zone, J. Iron Steel Res. Int., 30(2023), No. 2, p. 227. doi: 10.1007/s42243-022-00830-3
      [29]
      Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
      [30]
      T. Jiang, D.M. Liao, M. Zhou, et al., Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 804. doi: 10.1007/s12613-015-1137-4
      [31]
      W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying, High-temperature interactions between vanadium–titanium magnetite carbon composite hot briquettes and pellets under simulated blast furnace conditions, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1878. doi: 10.1007/s11663-019-01616-x
      [32]
      Q.Q. Hu, D.L. Ma, K. Zhou, et al., Phase transformation and slag evolution of vanadium–titanium magnetite pellets during softening–melting process, Powder Technol., 396(2022), p. 710. doi: 10.1016/j.powtec.2021.11.035
      [33]
      S. Lee and D.J. Min, Viscous behavior of FeO-bearing slag melts considering structure of slag, Steel Res. Int., 89(2018), No. 8, art.No.1800055. doi: 10.1002/srin.201800055
      [34]
      K. Hu, K. Tang, X.W. Lv, J. Safarian, Z.M. Yan, and B. Song, Modeling viscosity of high titania slag, Metall. Mater. Trans. B, 52(2021), No. 1, p. 245.
      [35]
      L.H. Zhang, S.T. Yang, W.D. Tang, H. Yang, and X.X. Xue, Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium–titanium magnetite, Ironmaking Steelmaking, 47(2020), No. 7, p. 821. doi: 10.1080/03019233.2019.1615814

    Catalog


    • /

      返回文章
      返回