Cite this article as: |
Bojian Chen, Tao Jiang, Jing Wen, Guangdong Yang, Tangxia Yu, Fengxiang Zhu, and Peng Hu, High-chromium vanadium–titanium magnetite all-pellet integrated burden optimization and softening–melting behavior based on flux pellets, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 498-507. https://doi.org/10.1007/s12613-023-2719-1 |
姜涛 E-mail: jiangt@smm.neu.edu.cn
温婧 E-mail: wenjing@smm.neu.edu.cn
[1] |
R.Q. Zeng, W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Influence and mechanism of CaO on the oxidation induration of hongge vanadium titanomagnetite pellets, ISIJ Int., 60(2020), No. 10, p. 2199. doi: 10.2355/isijinternational.ISIJINT-2020-091
|
[2] |
S.T. Yang, M. Zhou, X.X. Xue, T. Jiang, and C.Y. Sun, Isothermal reduction kinetics of chromium-bearing vanadium–titanium sinter reduced with CO gas at 1173 K, JOM, 71(2019), No. 8, p. 2812. doi: 10.1007/s11837-019-03533-5
|
[3] |
L.H. Zhang, S.T. Yang, W.D. Tang, and X.X. Xue, Investigations of MgO on sintering performance and metallurgical property of high-chromium vanadium-titanium magnetite, Minerals, 9(2019), No. 5, art. No. 324. doi: 10.3390/min9050324
|
[4] |
B.J. Chen, J. Wen, T. Jiang, L. Li, G.D. Yang, and T. Zhao, Phase evolution behavior and oxidation induration mechanism of high-chromium vanadium–titanium magnetite flux pellets, Metall. Mater. Trans. B, 53(2022), No. 1, p. 178. doi: 10.1007/s11663-021-02353-w
|
[5] |
G.J. Cheng, X.F. Zhang, Z.X. Gao, H. Yang, and X.X. Xue, Isothermal reduction behavior and kinetics of Russian high-chromium vanadium-titanium magnetite pellets under gas atmospheres of CO–CO2–N2 and CO–N2 at 873 K–1173 K, Energy Sources Part A, 44(2022), No. 2, p. 5490. doi: 10.1080/15567036.2020.1795309
|
[6] |
H.L. Song, J.P. Zhang, and X.X. Xue, Kinetics on chromium-bearing vanadia-titania magnetite smelting with high-basicity pellet, Processes, 9(2021), No. 5, art. No. 811. doi: 10.3390/pr9050811
|
[7] |
W.Q. Xu, B. Wan, T.Y. Zhu, and M.P. Shao, CO2 emissions from China’s iron and steel industry, J. Cleaner Prod., 139(2016), p. 1504. doi: 10.1016/j.jclepro.2016.08.107
|
[8] |
W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Cleaner Prod., 233(2019), No. 1, p.1314. doi: 10.1016/j.jclepro.2019.06.180
|
[9] |
Z.C. Guo and Z.X. Fu, Current situation of energy consumption and measures taken for energy saving in the iron and steel industry in China, Energy, 35(2010), No. 11, p. 4356. doi: 10.1016/j.energy.2009.04.008
|
[10] |
Y. Matsui, A. Sato, T. Oyama, T. Matsuo, S. Kitayama, and R. Ono, All pellets operation in Kobe No. 3 blast furnace under intensive coal injection, ISIJ Int., 43(2003), No. 2, p. 166. doi: 10.2355/isijinternational.43.166
|
[11] |
N. Eklund, B. Lindblom, J. Wikström, and B. Björkman, Operation at high pellet ratio and without external slag formers–trials in an experimental blast furnace, Steel Res. Int., 80(2009), No. 6, p. 379. doi: 10.2374/SRI09SP025
|
[12] |
P.K. Gupta, A.S. Rao, V.R. Sekhar, M. Ranjan, and T.K. Naha, Burden distribution control and its optimisation under high pellet operation, Ironmaking Steelmaking, 37(2010), No. 3, p. 235. doi: 10.1179/174328109X422566
|
[13] |
A. Agrawal, Blast furnace performance under varying pellet proportion, Trans. Indian Inst. Met., 72(2019), No. 3, p. 777. doi: 10.1007/s12666-018-1530-6
|
[14] |
C.C. Lan, S.H. Zhang, X.J. Liu, Q. Lyu, and M.F. Jiang, Change and mechanism analysis of the softening–melting behavior of the iron-bearing burden in a hydrogen-rich blast furnace, Int. J. Hydrogen Energy, 45(2020), No. 28, p. 14255. doi: 10.1016/j.ijhydene.2020.03.143
|
[15] |
Z.M. Chen, S.X. Ye, S.H. Geng, et al., Softening and melting performance of mixed burden under the simulated hydrogen-rich blast furnace atmosphere, Ironmaking Steelmaking 50(2023), No. 5, p. 538.
|
[16] |
A. Agrawal, D.J. Gavel, M.B. Shaik, S. Dwarapudi, and I. Paul, Optimum pellet basicity desirable for blast furnace operation, J. Inst. Eng. India Ser. D, 102(2021), No. 1, p. 87. doi: 10.1007/s40033-021-00258-1
|
[17] |
G.L. Wang, J. Kang, J.L. Zhang, et al., Softening–melting behavior of mixed burden based on low-magnesium sinter and fluxed pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 621. doi: 10.1007/s12613-020-2047-7
|
[18] |
A.V. Pavlov, O.P. Onorin, N.A. Spirin, and A.A. Polinov, MMK blast furnace operation with a high proportion of pellets in a charge. Part 1, Metallurgist, 60(2016), No. 5-6, p. 581. doi: 10.1007/s11015-016-0335-2
|
[19] |
A.V. Pavlov, O.P. Onorin, N.A. Spirin and A.A. Polinov, MMK blast furnace operation with a high proportion of pellets in a charge. Part 2, Metallurgist, 60(2016), No. 7-8, p. 653. doi: 10.1007/s11015-016-0346-z
|
[20] |
I.S. Bersenev, V.V. Bragin, A.A. Ugarov, et al., Improvement of technical and economic performance of blast-furnace smelting by pellet composition optimization, Steel Transl., 50(2020), No. 3, p. 171. doi: 10.3103/S0967091220030031
|
[21] |
A. Chakrabarty, R. Biswas, S. Basu, and S. Nag, Characterisation of binary mixtures of pellets and sinter for DEM simulations, Adv. Powder Technol., 33(2022), No. 1, art. No. 103358. doi: 10.1016/j.apt.2021.11.010
|
[22] |
Z.J. Zhao, H. Saxén, Y.J. Liu, X.F. She, and Q.G. Xue, Numerical study on the influence of pellet proportion on burden distribution in blast furnace, Ironmaking Steelmaking, 50(2023), No. 6, p. 613. doi: 10.1080/03019233.2022.2140254
|
[23] |
H. Wei, D.N. Mondal, H. Saxén, and Y.W. Yu, Numerical investigation of the radial ore-to-coke ratio in the blast furnace throat during nonuniform burden descent, Steel Res. Int., 94(2023), No. 3, art.No. 2200290. doi: 10.1002/srin.202200290
|
[24] |
R. Roeplal, Y.S. Pang, A. Adema, J. van der Stel, and D. Schott, Modelling of phenomena affecting blast furnace burden permeability using the discrete element method (DEM)–A review, Powder Technol., 415(2023), art. No. 118161. doi: 10.1016/j.powtec.2022.118161
|
[25] |
G.J. Cheng, X.X. Xue, Z.X. Gao, T. Jiang, H. Yang, and P.N. Duan, Effect of Cr2O3 on the reduction and smelting mechanism of high-chromium vanadium–titanium magnetite pellets, ISIJ Int., 56(2016), No. 11, p. 1938. doi: 10.2355/isijinternational.ISIJINT-2016-234
|
[26] |
M.R. Yang, J.Y. Xiang, C.G. Bai, X.G. Zhou, Z.C. Liu, and X.W. Lv, Solid-state reaction and diffusion behaviors of CaFe2O4 and TiO2 at 1373 K to 1473 K, Metall. Mater. Trans. B, 52(2021), No. 3, p. 1436. doi: 10.1007/s11663-021-02111-y
|
[27] |
K.K. Bai, L.C. Liu, Y.Z. Pan, H.B. Zuo, J.S. Wang, and Q.G. Xue, A review: Research progress of flux pellets and their application in China, Ironmaking Steelmaking, 48(2021), No. 9, p. 1048. doi: 10.1080/03019233.2021.1911770
|
[28] |
B.B. Lyu, G. Wang, L.D. Zhao, H.B. Zuo, Q.G. Xue, and J.S. Wang, Effect of atmosphere and basicity on softening–melting behavior of primary slag formation in cohesive zone, J. Iron Steel Res. Int., 30(2023), No. 2, p. 227. doi: 10.1007/s42243-022-00830-3
|
[29] |
Y.S. Lee, D.J. Min, S.M. Jung, and S.H. Yi, Influence of basicity and FeO content on viscosity of blast furnace type slags containing FeO, ISIJ Int., 44(2004), No. 8, p. 1283. doi: 10.2355/isijinternational.44.1283
|
[30] |
T. Jiang, D.M. Liao, M. Zhou, et al., Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 804. doi: 10.1007/s12613-015-1137-4
|
[31] |
W. Zhao, M.S. Chu, Z.G. Liu, H.T. Wang, J. Tang, and Z.W. Ying, High-temperature interactions between vanadium–titanium magnetite carbon composite hot briquettes and pellets under simulated blast furnace conditions, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1878. doi: 10.1007/s11663-019-01616-x
|
[32] |
Q.Q. Hu, D.L. Ma, K. Zhou, et al., Phase transformation and slag evolution of vanadium–titanium magnetite pellets during softening–melting process, Powder Technol., 396(2022), p. 710. doi: 10.1016/j.powtec.2021.11.035
|
[33] |
S. Lee and D.J. Min, Viscous behavior of FeO-bearing slag melts considering structure of slag, Steel Res. Int., 89(2018), No. 8, art.No.1800055. doi: 10.1002/srin.201800055
|
[34] |
K. Hu, K. Tang, X.W. Lv, J. Safarian, Z.M. Yan, and B. Song, Modeling viscosity of high titania slag, Metall. Mater. Trans. B, 52(2021), No. 1, p. 245.
|
[35] |
L.H. Zhang, S.T. Yang, W.D. Tang, H. Yang, and X.X. Xue, Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium–titanium magnetite, Ironmaking Steelmaking, 47(2020), No. 7, p. 821. doi: 10.1080/03019233.2019.1615814
|