留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(5)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1007
  • HTML全文浏览量:  292
  • PDF下载量:  55
  • 被引次数: 0
Fangna Dai, Zhifei Wang, Huakai Xu, Chuanhai Jiang, Yuguo Ouyang, Chunyu Lu, Yuan Jing, Shiwei Yao, and Xiaofei Wei, Metal-organic framework derived NiFe2O4/FeNi3@C composite for efficient electrocatalytic oxygen evolution reaction, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1914-1921. https://doi.org/10.1007/s12613-023-2721-7
Cite this article as:
Fangna Dai, Zhifei Wang, Huakai Xu, Chuanhai Jiang, Yuguo Ouyang, Chunyu Lu, Yuan Jing, Shiwei Yao, and Xiaofei Wei, Metal-organic framework derived NiFe2O4/FeNi3@C composite for efficient electrocatalytic oxygen evolution reaction, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1914-1921. https://doi.org/10.1007/s12613-023-2721-7
引用本文 PDF XML SpringerLink
研究论文

MOF衍生NiFe2O4/FeNi3@C复合材料的高效电催化析氧反应



  • 通讯作者:

    魏晓飞    E-mail: b21140026@s.upc.edu.cn

文章亮点

  • (1) 系统地研究了镍铁金属含量对金属-有机框架衍生物材料电催化性能的影响。
  • (2) 开发了优异析氧催化性能的廉价复合材料并分析了其中的反应机理。
  • (3) 总结了组分优化的调控方法对于催化剂催化活性的作用规律。
  • 金属有机框架(Metal-organic framework,MOF)材料作为一种由金属节点和有机配体结合而成的配位化合物,由于其多孔,比表面积大等特点,在催化领域有着相当不错的应用前景。但由于其导电性和稳定性差等缺点,MOF基催化剂在OER催化方面的实际应用并不深入。本文以镍铁基MOF为研究基础,以优化镍铁基MOF的OER催化性能为目的,通过组分优化,离子掺杂,界面复合等调控策略提升镍铁基MOF材料的OER催化性能,制备出高效的镍铁基MOF衍生催化材料。本文通过溶剂热法制备了双金属镍铁基MOF,并以镍铁基MOF为前驱体,通过热解制备了镍铁基MOF衍生材料,研究不同的金属配比、不同的热解温度对样品结构与OER催化性能的影响。实验结果表明,金属配比为Fe : Ni = 1:5,热解温度为450℃时,样品具备碳包覆的镍铁合金与氧化物(NiFe2O4/FeNi3@C)的复合结构,并且具有最佳的催化性能。当电流密度为10和100 mA·cm−2时,样品的OER过电位分别为307和377 mV,催化性能优于商用RuO2。因此,组分优化等调控方法能够有效的提升镍铁基MOF衍生材料的OER催化性能。
  • Research Article

    Metal-organic framework derived NiFe2O4/FeNi3@C composite for efficient electrocatalytic oxygen evolution reaction

    + Author Affiliations
    • Reducing the cost and improving the electrocatalytic activity are the key to developing high efficiency electrocatalysts for oxygen evolution reaction (OER). Here, bimetallic NiFe-based metal-organic framework (MOF) was prepared by solvothermal method, and then used as precursor to prepare NiFe-based MOF-derived materials by pyrolysis. The effects of different metal ratios and pyrolysis temperatures on the sample structure and OER electrocatalytic performance were investigated and compared. The experimental results showed that when the metal molar ratio was Fe : Ni = 1:5 and the pyrolysis temperature was 450°C, the sample (FeNi5-MOF-450) exhibits a composite structure of NiFe2O4/FeNi3/C and owns the superior electrocatalytic activity in OER. When the current density is 100 mA·cm−2, the overpotential of the sample was 377 mV with Tafel slope of 56.2 mV·dec−1, which indicates that FeNi5-MOF-450 exhibits superior electrocatalytic performance than the commercial RuO2. Moreover, the long-term stability of FeNi5-MOF-450 further promotes its development in OER. This work demonstrated that the regulatory methods such as component optimization can effectively improve the OER catalytic performance of NiFe-based MOF-derived materials.
    • loading
    • Supplementary Information-10.1007s12613-023-2721-7.docx
    • [1]
      L. Zhang, C.J. Lu, F. Ye, et al., Selenic acid etching assisted vacancy engineering for designing highly active electrocatalysts toward the oxygen evolution reaction, Adv. Mater., 33(2021), No. 14, art. No. 2007523. doi: 10.1002/adma.202007523
      [2]
      I.S. Amiinu, Z.H. Pu, X.B. Liu, et al., Multifunctional Mo–N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries, Adv. Funct. Mater., 27(2017), No. 44, art. No. 1702300. doi: 10.1002/adfm.201702300
      [3]
      N. Yao, G.W. Wang, H.N. Jia, et al., Intermolecular energy gap-induced formation of high-valent cobalt species in CoOOH surface layer on cobalt sulfides for efficient water oxidation, Angew. Chem. Int. Ed., 61(2022), No. 28, art. No. e202117178. doi: 10.1002/anie.202117178
      [4]
      Y.Q. Wang, S. Tao, H. Lin, et al., Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor, Nano Energy, 81(2021), art. No. 105606. doi: 10.1016/j.nanoen.2020.105606
      [5]
      K.Y. Zhu, X.F. Zhu, and W.S. Yang, Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts, Angew. Chem. Int. Ed., 58(2019), No. 5, p. 1252. doi: 10.1002/anie.201802923
      [6]
      K.X. Zhang and R.Q. Zou, Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges, Small, 17(2021), No. 37, art. No. 2100129. doi: 10.1002/smll.202100129
      [7]
      W.B. Chen, C.S. Wang, S.B. Su, H. Wang, and D.D. Cai, Synthesis of ZIF-9(III)/Co LDH layered composite from ZIF-9(I) based on controllable phase transition for enhanced electrocatalytic oxygen evolution reaction, Chem. Eng. J., 414(2021), art. No. 128784. doi: 10.1016/j.cej.2021.128784
      [8]
      S. Yuan, J.Y. Peng, B. Cai, et al., Tunable metal hydroxide-organic frameworks for catalysing oxygen evolution, Nat. Mater., 21(2022), No. 6, p. 673. doi: 10.1038/s41563-022-01199-0
      [9]
      I.C. Man, H.Y. Su, F. Calle-Vallejo, et al., Universality in oxygen evolution electrocatalysis on oxide surfaces, ChemCatChem, 3(2011), No. 7, p. 1159. doi: 10.1002/cctc.201000397
      [10]
      C.L. Ma, W. Sun, W.Q. Zaman, et al., Lanthanides regulated the amorphization–crystallization of IrO2 for outstanding OER performance, ACS Appl. Mater. Interfaces, 12(2020), No. 31, p. 34980. doi: 10.1021/acsami.0c08969
      [11]
      F.Q. Zheng, W.F. Zhang, X.X. Zhang, Y.L. Zhang, and W. Chen, Sub-2 nm ultrathin and robust 2D FeNi layered double hydroxide nanosheets packed with 1D FeNi-MOFs for enhanced oxygen evolution electrocatalysis, Adv. Funct. Mater., 31(2021), No. 43, art. No. 2103318. doi: 10.1002/adfm.202103318
      [12]
      W.D. Zhang, H. Yu, T. Li, et al., Hierarchical trimetallic layered double hydroxide nanosheets derived from 2D metal-organic frameworks for enhanced oxygen evolution reaction, Appl. Catal. B, 264(2020), art. No. 118532. doi: 10.1016/j.apcatb.2019.118532
      [13]
      L. Reith, J.N. Hausmann, S. Mebs, et al., In situ detection of iron in oxidation states ≥ IV in cobalt–iron oxyhydroxide reconstructed during oxygen evolution reaction, Adv. Energy Mater., 13(2023), No. 12, art. No. 2203886. doi: 10.1002/aenm.202203886
      [14]
      M. Batool, A. Hameed, and M.A. Nadeem, Recent developments on iron and nickel-based transition metal nitrides for overall water splitting: A critical review, Coord. Chem. Rev., 480(2023), art. No. 215029. doi: 10.1016/j.ccr.2023.215029
      [15]
      S. Ghosh, B. Dasgupta, S. Kalra, et al., Evolution of carbonate-intercalated γ-NiOOH from a molecularly derived nickel sulfide (pre)catalyst for efficient water and selective organic oxidation, Small, 19(2023), No. 16, art. No. 2206679. doi: 10.1002/smll.202206679
      [16]
      Z.Y. Yu, Y. Duan, J.D. Liu, et al., Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis, Nat. Commun., 10(2019), art. No. 2799. doi: 10.1038/s41467-019-10698-9
      [17]
      Z.Y. Yu, Y. Duan, X.Y. Feng, X.X. Yu, M.R. Gao, and S.H. Yu, Clean and affordable hydrogen fuel from alkaline water splitting: Past, recent progress, and future prospects, Adv. Mater., 33(2021), No. 31, art. No. 2007100. doi: 10.1002/adma.202007100
      [18]
      T.Z. Wu, S.N. Sun, J.J. Song, et al., Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation, Nat. Catal., 2(2019), No. 9, p. 763. doi: 10.1038/s41929-019-0325-4
      [19]
      Y.M. Sun, X. Ren, S.N. Sun, Z. Liu, S.B. Xi, and Z.J. Xu, Engineering high-spin state cobalt cations in spinel zinc cobalt oxide for spin channel propagation and active site enhancement in water oxidation, Angew. Chem. Int. Ed., 60(2021), No. 26, p. 14536. doi: 10.1002/anie.202102452
      [20]
      F. Yu, H.Q. Zhou, Y.F. Huang, et al., High-performance bifunctional porous non-noble metal phosphide catalyst for overall water splitting, Nat. Commun., 9(2018), art. No. 2551. doi: 10.1038/s41467-018-04746-z
      [21]
      J.J. Gao, H.B. Tao, and B. Liu, Progress of nonprecious-metal-based electrocatalysts for oxygen evolution in acidic media, Adv. Mater., 33(2021), No. 31, art. No. 2003786. doi: 10.1002/adma.202003786
      [22]
      X.J. Li, H.K. Zhang, Q. Hu, et al., Amorphous NiFe oxide-based nanoreactors for efficient electrocatalytic water oxidation, Angew. Chem. Int. Ed., 62(2023), No. 15, art. No. e202300478. doi: 10.1002/anie.202300478
      [23]
      Q.W. Zhang, Y.X. Hu, H.F. Wu, et al., Entropy-stabilized multicomponent porous spinel nanowires of NiFeXO4 (X = Fe, Ni, Al, Mo, Co, Cr) for efficient and durable electrocatalytic oxygen evolution reaction in alkaline medium, ACS Nano, 17(2023), No. 2, p. 1485. doi: 10.1021/acsnano.2c10247
      [24]
      J.F. Zhang, Y. Jiang, Y. Wang, et al., Ultrathin carbon coated mesoporous Ni–NiFe2O4 nanosheet arrays for efficient overall water splitting, Electrochim. Acta, 321(2019), art. No. 134652. doi: 10.1016/j.electacta.2019.134652
      [25]
      X.K. Chen, X.H. Zhang, L.Z. Zhuang, et al., Multiple vacancies on (111) facets of single-crystal NiFe2O4 spinel boost electrocatalytic oxygen evolution reaction, Chem. Asian. J., 15(2020), No. 23, p. 3995. doi: 10.1002/asia.202000468
      [26]
      H.W. Xu, B. Liu, J.Y. Liu, Y. Yao, Z.G. Gu, and X.D. Yan, Revealing the surface structure-performance relationship of interface-engineered NiFe alloys for oxygen evolution reaction, J. Colloid Interface Sci., 622(2022), p. 986. doi: 10.1016/j.jcis.2022.04.160
      [27]
      M. Zhao, H.L. Li, W.Y. Yuan, and C.M. Li, Tannic acid-mediated in situ controlled assembly of NiFe alloy nanoparticles on pristine graphene as a superior oxygen evolution catalyst, ACS Appl. Energy Mater., 3(2020), No. 4, p. 3966. doi: 10.1021/acsaem.0c00362
      [28]
      Q.L. Kang, D.W. Lai, W.Y. Tang, Q.Y. Lu, and F. Gao, Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction, Chem. Sci., 12(2021), No. 11, p. 3818. doi: 10.1039/D0SC06716D
      [29]
      F.L. Zhou, M.X. Gan, D.F. Yan, X.L. Chen, and X. Peng, Hydrogen-rich pyrolysis from Ni–Fe heterometallic Schiff base centrosymmetric cluster facilitates NiFe alloy for efficient OER electrocatalysts, Small, 19(2023), No. 24, art. No. 2208276. doi: 10.1002/smll.202208276
      [30]
      X. Shi, A.P. Wu, H.J. Yan, et al., A “MOFs plus MOFs” strategy toward Co–Mo2N tubes for efficient electrocatalytic overall water splitting, J. Mater. Chem. A, 6(2018), No. 41, p. 20100. doi: 10.1039/C8TA07906D
      [31]
      C.S. Cao, D.D. Ma, Q. Xu, X.T. Wu, and Q.L. Zhu, Semisacrificial template growth of self‐supporting MOF nanocomposite electrode for efficient electrocatalytic water oxidation, Adv. Funct. Mater., 29(2019), No. 6, art. No. 1807418. doi: 10.1002/adfm.201807418
      [32]
      K. Ge, S.J. Sun, Y. Zhao, et al., Facile synthesis of two-dimensional iron/cobalt metal-organic framework for efficient oxygen evolution electrocatalysis, Angew. Chem. Int. Ed., 60(2021), No. 21, p. 12097. doi: 10.1002/anie.202102632
      [33]
      J.P. Hu, Y.Z. Qin, H. Sun, et al., Combining multivariate electrospinning with surface MOF functionalization to construct tunable active sites toward trifunctional electrocatalysis, Small, 18(2022), No. 9, art. No. 2106260. doi: 10.1002/smll.202106260
      [34]
      F.L. Li, Q. Shao, X.Q. Huang, and J.P. Lang, Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis, Angew. Chem. Int. Ed., 57(2018), No. 7, p. 1888. doi: 10.1002/anie.201711376
      [35]
      X. Zhang, J.S. Luo, K. Wan, et al., From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts, J. Mater. Chem. A, 7(2019), No. 4, p. 1616. doi: 10.1039/C8TA08508K
      [36]
      D.K. Wang, M.J. Suo, S.Q. Lai, et al., Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation, Appl. Catal. B, 321(2023), art. No. 122054. doi: 10.1016/j.apcatb.2022.122054
      [37]
      V.H. Nguyen, T.D. Nguyen, L.G. Bach, et al., Effective photocatalytic activity of mixed Ni/Fe-base metal-organic framework under a compact fluorescent daylight lamp, Catalysts, 8(2018), No. 11, art. No. 487. doi: 10.3390/catal8110487
      [38]
      Z.D. Huang, J.H. Liu, Z.Y. Xiao, et al., A MOF-derived coral-like NiSe@NC nanohybrid: An efficient electrocatalyst for the hydrogen evolution reaction at all pH values, Nanoscale, 10(2018), No. 48, p. 22758. doi: 10.1039/C8NR06877A
      [39]
      D. Chen, J.W. Zhu, X.Q. Mu, et al., Nitrogen-doped carbon coupled FeNi3 intermetallic compound as advanced bifunctional electrocatalyst for OER, ORR and Zn-air batteries, Appl. Catal. B, 268(2020), art. No. 118729. doi: 10.1016/j.apcatb.2020.118729
      [40]
      K. Ji, Y.L. Yue, and P. Yang, Interface effect in MIL-53(Fe)/metal-phenolic network (Ni, Co, and Mn) nanoarchitectures for efficient oxygen evolution reaction, Appl. Surf. Sci., 608(2023), art. No. 155184. doi: 10.1016/j.apsusc.2022.155184
      [41]
      X. Meng, J.H. Xie, Y.B. Sun, et al., Fe2O3/spinel NiFe2O4 heterojunctions in-situ wrapped by one-dimensional porous carbon nanofibers for boosting oxygen evolution/reduction reactions, Int. J. Hydrogen Energy, 47(2022), No. 50, p. 21329. doi: 10.1016/j.ijhydene.2022.04.222
      [42]
      W.J. Gong, H.Y. Zhang, L. Yang, Y. Yang, J.S. Wang, and H. Liang, Core@shell MOFs derived Co2P/CoP@NPGC as a highly-active bifunctional electrocatalyst for ORR/OER, J. Ind. Eng. Chem., 106(2022), p. 492. doi: 10.1016/j.jiec.2021.11.032
      [43]
      S. Seok, M. Choi, Y. Lee, et al., Ni nanoparticles on Ni core/N-doped carbon shell heterostructures for electrocatalytic oxygen evolution, ACS Appl. Nano Mater., 4(2021), No. 9, p. 9418. doi: 10.1021/acsanm.1c01908
      [44]
      D.D. Qi, X. Chen, W.P. Liu, et al., A Ni/Fe-based heterometallic phthalocyanine conjugated polymer for the oxygen evolution reaction, Inorg. Chem. Front., 7(2020), No. 3, p. 642. doi: 10.1039/C9QI01325C
      [45]
      Y.Y. Guo, Q. Huang, J.Y. Ding, et al., CoMo carbide/nitride from bimetallic MOF precursors for enhanced OER performance, Int. J. Hydrogen Energy, 46(2021), No. 43, p. 22268. doi: 10.1016/j.ijhydene.2021.04.084
      [46]
      S.F. Tan, W.M. Ouyang, Y.J. Ji, and Q.W. Hong, Carbon wrapped bimetallic NiCo nanospheres toward excellent HER and OER performance, J. Alloys Compd., 889(2021), art. No. 161528. doi: 10.1016/j.jallcom.2021.161528
      [47]
      Y.C. Zheng, G.K. Zhang, P.J. Zhang, et al., Structural investigation of metallic Ni nanoparticles with N-doped carbon for efficient oxygen evolution reaction, Chem. Eng. J., 429(2022), art. No. 132122. doi: 10.1016/j.cej.2021.132122
      [48]
      J. Lu, S. Ji, P. Kannan, H. Wang, X.Y. Wang and R.F. Wang, Hydrophilic Ni(OH)2@CoB nano-chains with shell-core structure as an efficient catalyst for oxygen evolution reaction, J. Alloys Compd., 844(2020), art. No. 156129. doi: 10.1016/j.jallcom.2020.156129
      [49]
      S.H. Park, S.H. Kang, and D.H. Youn, Direct one-step growth of bimetallic Ni2Mo3N on Ni foam as an efficient oxygen evolution electrocatalyst, Materials, 14(2021), No. 16, art. No. 4768. doi: 10.3390/ma14164768
      [50]
      G. Yuan, Y.J. Hu, Z.H. Wang, et al., Facile synthesis of self-supported amorphous phosphorus-doped Ni(OH)2 composite anodes for efficient water oxidation, Catal. Sci. Technol., 10(2020), No. 1, p. 263. doi: 10.1039/C9CY02014D
      [51]
      H.M.A. Amin, M. Attia, D. Tetzlaff, and U.P. Apfel, Tailoring the electrocatalytic activity of pentlandite FexNi9−xS8 nanoparticles via variation of the Fe : Ni ratio for enhanced water oxidation, ChemElectroChem, 8(2021), No. 20, p. 3863. doi: 10.1002/celc.202100713
      [52]
      Z.Y. Chen, X.L. Liu, T. Shen, C.Z. Wu, L.G. Zu, and L. Zhang, Porous NiFe alloys synthesized via freeze casting as bifunctional electrocatalysts for oxygen and hydrogen evolution reaction, Int. J. Hydrogen Energy, 46(2021), No. 76, p. 37736. doi: 10.1016/j.ijhydene.2021.09.059

    Catalog


    • /

      返回文章
      返回