Cite this article as: |
Junjie Zhangand Xiang Wu, Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 179-185. https://doi.org/10.1007/s12613-023-2724-4 |
武祥 E-mail: wuxiang05@163.com
锌离子混合电容器(ZHCs)作为新一代锌离子储能系统,由于将电池和超级电容器完美结合,近年来引起了研究者的极大兴趣。然而,其较低的能量密度和循环能力需要进一步提高。因此,构建一种可行的储能系统对提高ZHCs的电化学性能至关重要。本文制备了以活性炭(AC)作阴极,商用锌箔作阳极,硫酸锌做电解液的AC//Zn混合电容器。通过添加不同浓度的硫酸镁调控电解液,并采用显微组织观察、电化学测量和恒电流放电试验研究了电解液中不同Mg2+含量与充放电性能的关系。结果表明,适当的增加Mg2+可以有效地提升电化学性能。加入1 M Mg2+的AC//Zn在1A/g电流密度下,比容量可达82 mAh·g−1,并且在10000圈充放电循环后容量保持率达到91%。 这些优异的性能由于Mg2+的加入展示了一种自我修复的静电屏蔽效应,以抑制阳极表面的锌枝晶和副产物的生成,它还促进了电子的转移,使法拉第氧化还原反应得以进行,从而产生大的比电容。因此,AC//Zn系统由于其优异的充放电性能和循环稳定性,在未来的储能器件中显示出潜在的应用前景。
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs). However, their energy storage mechanisms in zinc-based systems are still under debate. Herein, we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions. And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors. The zinc-ion capacitor with Mg2+ mixed solution delivers 82 mAh·g−1 capacity at 1 A·g−1 and maintains 91% of the original capacitance after 10000 cycling. It is superior to the other assembled zinc-ion devices in single-component electrolytes. The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.
[1] |
X.H. Chen, X.D. Shi, P.C. Ruan, et al., Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes, Small Sci., 3(2023), No. 6, art. No. 2300007. doi: 10.1002/smsc.202300007
|
[2] |
Y. Liu, Y. Liu, and X. Wu, Defect engineering of vanadium-based electrode materials for zinc ion battery, Chin. Chem. Lett., 34(2023), No. 7, art. No. 107839. doi: 10.1016/j.cclet.2022.107839
|
[3] |
X.Y. Deng, J.J. Li, Z. Shan, J.W. Sha, L.Y. Ma, and N.Q. Zhao, A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance, J. Mater. Chem. A, 8(2020), No. 23, p. 11617. doi: 10.1039/D0TA02770G
|
[4] |
Y.C. Sun, X.W. Wang, and X. Wu, High-performance flexible hybrid capacitors by regulating NiCoMoS@Mo0.75-LDH electrode structure, Mater. Res. Bull., 158(2023), art. No. 112073. doi: 10.1016/j.materresbull.2022.112073
|
[5] |
Y. Liu, A. Umar, and X. Wu, Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor, Rare Met., 41(2022), No. 9, p. 2985. doi: 10.1007/s12598-022-02030-0
|
[6] |
L.B. Dong, X.P. Ma, Y. Li, et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Mater., 13(2018), p. 96. doi: 10.1016/j.ensm.2018.01.003
|
[7] |
L.B. Dong, C.J. Xu, Y. Li, et al., Breathable and wearable energy storage based on highly flexible paper electrodes, Adv. Mater., 28(2016), No. 42, p. 9313. doi: 10.1002/adma.201602541
|
[8] |
X.W. Wang, Y.C. Sun, W.C. Zhang, J. Liu, and X. Wu, Hierarchical Cu0.92Co2.08O4@NiCo-layered double hydroxide nanoarchitecture for asymmetric flexible storage device, Mater. Today Sustain., 17(2022), art. No. 100097. doi: 10.1016/j.mtsust.2021.100097
|
[9] |
Q.B. Zhang, Y.C. Liu, and X.B. Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1545. doi: 10.1007/s12613-021-2354-7
|
[10] |
Z.D. Huang, T.R. Wang, H. Song, et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors, Angew. Chem. Int. Ed., 60(2021), No. 2, p. 1011. doi: 10.1002/anie.202012202
|
[11] |
P. Kantichaimongkol, J. Cao, D.D. Zhang, Z.Y. Zeng, X.Y. Zhang, and J.Q. Qin, Navajoite phase V5O12·6H2O nanorods with ultra-long lifespan for aqueous zinc-ion batteries, J. Alloys Compd., 937(2023), art. No. 168335. doi: 10.1016/j.jallcom.2022.168335
|
[12] |
S.P. Jiang, S.L. Yun, H.J. Cao, Z.Q. Zhang, H.B. Feng, and H.C. Chen, Porous carbon matrix-encapsulated MnO in situ derived from metal–organic frameworks as advanced anode materials for Li-ion capacitors, Sci. China Mater., 65(2022), No. 1, p. 59. doi: 10.1007/s40843-021-1727-3
|
[13] |
Y. Liu, Y. Liu, Y. Yamauchi, Z.A. Alothman, Y.V. Kaneti, and X. Wu, Enhanced zinc ion storage capability of V2O5 electrode materials with hollow interior cavities, Batteries Supercaps, 4(2021), No. 12, p. 1867. doi: 10.1002/batt.202100172
|
[14] |
L.B. Dong, W. Yang, W. Yang, Y. Li, W.J. Wu, and G.X. Wang, Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors, J. Mater. Chem. A, 7(2019), No. 23, p. 13810. doi: 10.1039/C9TA02678A
|
[15] |
S.Q. Zhao, Y. Liu, and X. Wu, Rose-shaped VS2 nanosheets as cathode materials for rechargeable zinc ion batteries, CrystEngComm, 25(2023), No. 13, p. 1986. doi: 10.1039/D3CE00053B
|
[16] |
Y. Liu and X. Wu, Recent advances of transition metal chalcogenides as cathode materials for aqueous zinc-ion batteries, Nanomaterials, 12(2022), No. 19, art. No. 3298. doi: 10.3390/nano12193298
|
[17] |
J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
|
[18] |
Y.G. Lee and G.H. An, Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41342. doi: 10.1021/acsami.0c10512
|
[19] |
Y. Liu, Y. Liu, X. Wu, and Y.R. Cho, High performance aqueous zinc battery enabled by potassium ion stabilization, J. Colloid Interface Sci., 628(2022), p. 33. doi: 10.1016/j.jcis.2022.08.046
|
[20] |
P.G. Liu, Y. Gao, Y.Y. Tan, et al., Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors, Nano Res., 12(2019), No. 11, p. 2835. doi: 10.1007/s12274-019-2521-6
|
[21] |
Q.Y. Liu, H.Z. Zhang, J.H. Xie, X.Q. Liu, and X.H. Lu, Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors, Carbon Energy, 2(2020), No. 4, p. 521. doi: 10.1002/cey2.69
|
[22] |
X. Liu, Y.J. Sun, Y. Tong, et al., Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review, Nano Energy, 86(2021), art. No. 106070. doi: 10.1016/j.nanoen.2021.106070
|
[23] |
Y. Liu, Y. Liu, X. Wu, and Y.R. Cho, Enhanced electrochemical performance of Zn/VOx batteries by a carbon-encapsulation strategy, ACS Appl. Mater. Interfaces, 14(2022), No. 9, p. 11654. doi: 10.1021/acsami.2c00001
|
[24] |
R.W. Cui, Z.W. Zhang, H.J. Zhang, Z.H. Tang, Y.H. Xue, and G.Z. Yang, Aqueous organic zinc-ion hybrid supercapacitors prepared by 3D vertically aligned graphene-polydopamine composite electrode, Nanomaterials, 12(2022), No. 3, art. No. 386. doi: 10.3390/nano12030386
|
[25] |
J.N. Hao, J. Long, B. Li, et al., Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive, Adv. Funct. Mater., 29(2019), No. 34, art. No. 1903605. doi: 10.1002/adfm.201903605
|
[26] |
Y. Liu, P.F. Hu, H.Q. Liu, J.R. Song, A. Umar, and X. Wu, Toward a high performance asymmetric hybrid capacitor by electrode optimization, Inorg. Chem. Front., 6(2019), No. 10, p. 2824. doi: 10.1039/C9QI00927B
|
[27] |
D. Sui, M.M. Wu, K.Y. Shi, et al., Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond, Carbon, 185(2021), p. 126. doi: 10.1016/j.carbon.2021.08.084
|
[28] |
H. Tang, J.J. Yao, and Y.R. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: A review, Adv. Energy Mater., 11(2021), No. 14, art. No. 2003994. doi: 10.1002/aenm.202003994
|
[29] |
C.W. Wang, M.J. O’Connell, and C.K. Chan, Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis, ACS Appl. Mater. Interfaces, 7(2015), No. 16, p. 8952. doi: 10.1021/acsami.5b02453
|
[30] |
C. Wang, Z.X. Pei, Q.Q. Meng, et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: The pivotal role of ZnCl2 salt-based electrolytes, Angew. Chem. Int. Ed., 60(2021), No. 2, p. 990. doi: 10.1002/anie.202012030
|
[31] |
X.W. Wang, Y.C. Sun, W.C. Zhang, and X. Wu, Flexible CuCo2O4@Ni–Co–S hybrids as electrode materials for high-performance energy storage devices, Chin. Chem. Lett., 34(2023), No. 3, art. No. 107593. doi: 10.1016/j.cclet.2022.06.016
|
[32] |
R.J. Yi, X.D. Shi, Y. Tang, et al., Carboxymethyl chitosan-modified zinc anode for high-performance zinc-iodine battery with narrow operating voltage, Small Struct., 4(2023), No. 9, art. No. 2300020. doi: 10.1002/sstr.202300020
|
[33] |
P.J. Wang, X.S. Xie, Z.Y. Xing, et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors, Adv. Energy Mater., 11(2021), No. 30, art. No. 2101158. doi: 10.1002/aenm.202101158
|
[34] |
K. Xia, X.G. Zeng, H.F. Zhu, J. Gong, and H. Luo, Mg-doped Li2ZnTi3O8/C as high-performance anode materials for lithium-ion batteries, Vacuum, 207(2023), art. No. 111614. doi: 10.1016/j.vacuum.2022.111614
|
[35] |
K.L. Wang and Y. Xiao, Inhibiting dendrite growth of electrodeposited zinc via an applied capacitor, J. Electroanal. Chem., 920(2022), art. No. 116597. doi: 10.1016/j.jelechem.2022.116597
|
[36] |
S. Aksoy, Y. Caglar, S. Ilican, and M. Caglar, Sol−gel derived Li−Mg co-doped ZnO films: Preparation and characterization via XRD, XPS, FESEM, J. Alloys Compd., 512(2012), No. 1, p. 171. doi: 10.1016/j.jallcom.2011.09.058
|