Cite this article as:

Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin, and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp.395-404. https://dx.doi.org/10.1007/s12613-023-2726-2
Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin, and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp.395-404. https://dx.doi.org/10.1007/s12613-023-2726-2
引用本文 PDF XML SpringerLink

兼具适当平台容量和高倍率性能的MOF衍生多孔石墨化碳材料用于高性能锂离子电容器

摘要: 锂离子电容器(LIC)作为一种混合储能装置,电容型正极发生快速的吸附/解吸过程,而电池型负极发生缓慢的氧化还原反应,正负极动力学不匹配,严重限制了锂离子电容器的功率密度。另外,在锂离子电容循环过程中,由于极化增大以及预存锂的消耗,负极电势会逐渐向高值移动,导致正极材料容量利用率降低,降低器件的能量密度和循环稳定性。负极材料长的充放电平台,不仅能够减缓负极电势向高值偏移的速度,而且有利于正极设计更高的容量,提升器件的稳定性和能量密度。开发出兼具高倍率性能和长充放电平台的负极材料是实现锂离子电容高能量密度、高功率密度和长循环寿命的关键。金属有机框架由于金属节点、配体以及拓扑类型的丰富、可调特性而成为构建多孔碳的理想前驱体。本文以刚性配体合成具有三重互穿结构的Co-MOF作为前驱体,将其在不同温度(900°C、1100°C、1300°C、1500°C)下碳化,经酸洗后得到多孔石墨化碳材料(PGCs)。制备的PGC-1300具有优化的石墨化程度和多孔框架,不仅具有较高的平台容量(0.2 V以下,0.05 A⋅g−1 时为105.0 mAh⋅g−1),而且为离子提供了更便捷的通道,提高了倍率性能(3.2 A⋅g−1时,为128.5 mAh⋅g−1)。根据动力学分析,可以发现扩散控制的表面诱导电容过程和锂离子插层过程共存于锂离子存储过程中。此外,以预锂化的PGC-1300 作为负极,活性炭(AC)作为正极构建的 PGC-1300//AC 锂离子电容器具有高的能量密度(102.8 Wh⋅kg−1),高的功率密度(6017.1 W⋅kg−1)以及高的循环稳定性(1.0 A⋅g−1下5000次循环后的容量保持率为93.6%)。

 

MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors

Abstract: The development of anode materials with high rate capability and long charge–discharge plateau is the key to improve performance of lithium-ion capacitors (LICs). Herein, the porous graphitic carbon (PGC-1300) derived from a new triply interpenetrated cobalt metal-organic framework (Co-MOF) was prepared through the facile and robust carbonization at 1300°C and washing by HCl solution. The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework, which not only contributes to high plateau capacity (105.0 mAh·g−1 below 0.2 V at 0.05 A·g−1), but also supplies more convenient pathways for ions and increases the rate capability (128.5 mAh·g−1 at 3.2 A·g−1). According to the kinetics analyses, it can be found that diffusion regulated surface induced capacitive process and Li-ions intercalation process are coexisted for lithium-ion storage. Additionally, LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon (AC) cathode exhibited an increased energy density of 102.8 Wh·kg−1, a power density of 6017.1 W·kg−1, together with the excellent cyclic stability (91.6% retention after 10000 cycles at 1.0 A·g−1).

 

/

返回文章
返回