留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  467
  • HTML全文浏览量:  168
  • PDF下载量:  31
  • 被引次数: 0
Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin, and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 395-404. https://doi.org/10.1007/s12613-023-2726-2
Cite this article as:
Ge Chu, Chaohui Wang, Zhewei Yang, Lin Qin, and Xin Fan, MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 395-404. https://doi.org/10.1007/s12613-023-2726-2
引用本文 PDF XML SpringerLink
研究论文

兼具适当平台容量和高倍率性能的MOF衍生多孔石墨化碳材料用于高性能锂离子电容器



  • 通讯作者:

    杨哲伟    E-mail: yangzhewei@tyut.edu.cn

    樊新    E-mail: xfan@glut.edu.cn

文章亮点

  • (1)以刚性配体合成具有三重互穿结构的Co-MOF作为前驱体,经过碳化、酸洗后,制备得到多孔石墨化碳材料。
  • (2)多孔石墨化碳材料既具有高的倍率性能(3.2 A⋅g−1时,容量为128.5 mAh⋅g−1),同时也具有较高的平台容量(0.2 V以下,0.05 A⋅g−1,容量为105 mAh⋅g−1)。
  • (3)以预锂化的多孔石墨化碳材料作为负极,活性炭(AC)作为正极组装的锂离子电容器具有高的能量密度(102.8 Wh⋅kg−1),高的功率密度(6017.1 W⋅kg−1)以及高的循环稳定性(1 A⋅g−1下5000次循环后的容量保持率为93.6%)。
  • 锂离子电容器(LIC)作为一种混合储能装置,电容型正极发生快速的吸附/解吸过程,而电池型负极发生缓慢的氧化还原反应,正负极动力学不匹配,严重限制了锂离子电容器的功率密度。另外,在锂离子电容循环过程中,由于极化增大以及预存锂的消耗,负极电势会逐渐向高值移动,导致正极材料容量利用率降低,降低器件的能量密度和循环稳定性。负极材料长的充放电平台,不仅能够减缓负极电势向高值偏移的速度,而且有利于正极设计更高的容量,提升器件的稳定性和能量密度。开发出兼具高倍率性能和长充放电平台的负极材料是实现锂离子电容高能量密度、高功率密度和长循环寿命的关键。金属有机框架由于金属节点、配体以及拓扑类型的丰富、可调特性而成为构建多孔碳的理想前驱体。本文以刚性配体合成具有三重互穿结构的Co-MOF作为前驱体,将其在不同温度(900°C、1100°C、1300°C、1500°C)下碳化,经酸洗后得到多孔石墨化碳材料(PGCs)。制备的PGC-1300具有优化的石墨化程度和多孔框架,不仅具有较高的平台容量(0.2 V以下,0.05 A⋅g−1 时为105.0 mAh⋅g−1),而且为离子提供了更便捷的通道,提高了倍率性能(3.2 A⋅g−1时,为128.5 mAh⋅g−1)。根据动力学分析,可以发现扩散控制的表面诱导电容过程和锂离子插层过程共存于锂离子存储过程中。此外,以预锂化的PGC-1300 作为负极,活性炭(AC)作为正极构建的 PGC-1300//AC 锂离子电容器具有高的能量密度(102.8 Wh⋅kg−1),高的功率密度(6017.1 W⋅kg−1)以及高的循环稳定性(1.0 A⋅g−1下5000次循环后的容量保持率为93.6%)。
  • Research Article

    MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors

    + Author Affiliations
    • The development of anode materials with high rate capability and long charge–discharge plateau is the key to improve performance of lithium-ion capacitors (LICs). Herein, the porous graphitic carbon (PGC-1300) derived from a new triply interpenetrated cobalt metal-organic framework (Co-MOF) was prepared through the facile and robust carbonization at 1300°C and washing by HCl solution. The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework, which not only contributes to high plateau capacity (105.0 mAh·g−1 below 0.2 V at 0.05 A·g−1), but also supplies more convenient pathways for ions and increases the rate capability (128.5 mAh·g−1 at 3.2 A·g−1). According to the kinetics analyses, it can be found that diffusion regulated surface induced capacitive process and Li-ions intercalation process are coexisted for lithium-ion storage. Additionally, LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon (AC) cathode exhibited an increased energy density of 102.8 Wh·kg−1, a power density of 6017.1 W·kg−1, together with the excellent cyclic stability (91.6% retention after 10000 cycles at 1.0 A·g−1).
    • loading
    • Supplementary Information-s12613-023-2726-2.docx
    • [1]
      X.L. Yi, X.H. Li, J. Zhong, et al., Unraveling the mechanism of different kinetics performance between ether and carbonate ester electrolytes in hard carbon electrode, Adv. Funct. Mater., 32(2022), No. 48, art. No. 2209523. doi: 10.1002/adfm.202209523
      [2]
      C.Y. Wang, T. Liu, X.G. Yang, et al., Fast charging of energy-dense lithium-ion batteries, Nature, 611(2022), No. 7936, p. 485. doi: 10.1038/s41586-022-05281-0
      [3]
      Z.Y. Feng, W.J. Peng, Z.X. Wang, et al., Review of silicon-based alloys for lithium-ion battery anodes, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1549. doi: 10.1007/s12613-021-2335-x
      [4]
      X.D. Wang, R.B. Yu, C. Zhan, W. Wang, and X. Liu, Editorial for special issue on advanced energy storage and materials for the 70th Anniversary of USTB, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 905. doi: 10.1007/s12613-022-2490-8
      [5]
      U. Bhattacharjee, S. Bhowmik, S. Ghosh, and S.K. Martha, Effect of in situ derived sulfur dispersion on dual carbon lithium-ion capacitors, J. Power Sources, 542(2022), art. No. 231768. doi: 10.1016/j.jpowsour.2022.231768
      [6]
      S.Y. Dong, N. Lv, Y.L. Wu, G.Y. Zhu, and X.C. Dong, Lithium-ion and sodium-ion hybrid capacitors: From insertion-type materials design to devices construction, Adv. Funct. Mater., 31(2021), No. 21, art. No. 2100455. doi: 10.1002/adfm.202100455
      [7]
      P. Naskar, D. Kundu, A. Maiti, P. Chakraborty, B. Biswas, and A. Banerjee, Frontiers in hybrid ion capacitors: A review on advanced materials and emerging devices, ChemElectroChem, 8(2021), No. 8, p. 1390. doi: 10.1002/celc.202100325
      [8]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [9]
      D. Lei, Z.D. Hou, N. Li, et al., A homologous N/P-codoped carbon strategy to streamline nanostructured MnO/C and carbon toward boosted lithium-ion capacitors, Carbon, 201(2023), p. 260. doi: 10.1016/j.carbon.2022.09.019
      [10]
      G.Y. Zhang, K. Sun, Y.Y. Liu, et al., Double reaction initiated self-assembly process fabricated hard carbon with high power capability for lithium-ion capacitor anodes, Appl. Surf. Sci., 609(2023), art. No. 155083. doi: 10.1016/j.apsusc.2022.155083
      [11]
      Z.W. Yang, H.J. Guo, X.H. Li, et al., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium-ion capacitors, J. Mater. Chem. A, 5(2017), No. 29, p. 15302. doi: 10.1039/C7TA03862C
      [12]
      J. Zhang, H.Z. Wu, J. Wang, J.L. Shi, and Z.Q. Shi, Pre-lithiation design and lithium-ion intercalation plateaus utilization of mesocarbon microbeads anode for lithium-ion capacitors, Electrochim. Acta, 182(2015), p. 156. doi: 10.1016/j.electacta.2015.09.074
      [13]
      S.D. Liu, L. Kang, J. Zhang, S.C. Jun, and Y. Yamauchi, Carbonaceous anode materials for non-aqueous sodium- and potassium-ion hybrid capacitors, ACS Energy Lett., 6(2021), No. 11, p. 4127. doi: 10.1021/acsenergylett.1c01855
      [14]
      M.R. Wu, M.Y. Gao, S.Y. Zhang, et al., High-performance lithium-sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
      [15]
      M.Y. Gao, Y.C. Xue, Y.T. Zhang, et al., Growing Co–Ni–Se nanosheets on 3D carbon frameworks as advanced dual functional electrodes for supercapacitors and sodium ion batteries, Inorg. Chem. Front., 9(2022), No. 15, p. 3933. doi: 10.1039/D2QI00695B
      [16]
      W. Yang, W. Yang, F. Zhang, G.X. Wang, and G.J. Shao, Hierarchical interconnected expanded graphitic ribbons embedded with amorphous carbon: An advanced carbon nanostructure for superior lithium and sodium storage, Small, 14(2018), No. 39, art. No. 1802221. doi: 10.1002/smll.201802221
      [17]
      M. O’Keeffe and O.M. Yaghi, Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets, Chem. Rev., 112(2012), No. 2, p. 675. doi: 10.1021/cr200205j
      [18]
      Z.Q. Ye, Y. Jiang, L. Li, F. Wu, and R.J. Chen, Rational design of MOF-based materials for next-generation rechargeable batteries, Nano Micro Lett., 13(2021), No. 1, art. No. 203. doi: 10.1007/s40820-021-00726-z
      [19]
      J.W. Zhou and B. Wang, Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage, Chem. Soc. Rev., 46(2017), No. 22, p. 6927. doi: 10.1039/C7CS00283A
      [20]
      S.Y. Zhang, Y.C. Xue, Y.T. Zhang, et al., KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 601. doi: 10.1007/s12613-022-2539-8
      [21]
      J.N. Zhou, Q.Y. Yang, Q.Y. Xie, et al., Recent progress in Co-based metal-organic framework derivatives for advanced batteries, J. Mater. Sci. Technol., 96(2022), p. 262. doi: 10.1016/j.jmst.2021.04.033
      [22]
      M.X. Liu, F.L. Zhao, D.Z. Zhu, et al., Ultramicroporous carbon nanoparticles derived from metal-organic framework nanoparticles for high-performance supercapacitors, Mater. Chem. Phys., 211(2018), p. 234. doi: 10.1016/j.matchemphys.2018.02.030
      [23]
      A.D. Tan, Y.F. Wang, Z.Y. Fu, P. Tsiakaras, and Z.X. Liang, Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks, Appl. Catal. B, 218(2017), p. 260. doi: 10.1016/j.apcatb.2017.06.051
      [24]
      Y.C. Xue, X.M. Guo, M.R. Wu, et al., Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598. doi: 10.1007/s12274-021-3640-4
      [25]
      H.B. Aiyappa, P. Pachfule, R. Banerjee, and S. Kurungot, Porous carbons from nonporous MOFs: Influence of ligand characteristics on intrinsic properties of end carbon, Cryst. Growth Des., 13(2013), No. 10, p. 4195. doi: 10.1021/cg401122u
      [26]
      Y.X. Zhao, Y.W. Sun, J. Li, et al., Interpenetrated N-rich MOF derived vesicular N-doped carbon for high performance lithium-ion battery, Dalton Trans., 51(2022), No. 20, p. 7817. doi: 10.1039/D2DT00551D
      [27]
      S. Yuan, Q.H. Lai, X. Duan, and Q. Wang, Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review, J. Energy Storage, 61(2023), art. No. 106716. doi: 10.1016/j.est.2023.106716
      [28]
      Y.B. Ma, K. Wang, Y.N. Xu, et al., Dehalogenation produces graphene wrapped carbon cages as fast-kinetics and large-capacity anode for lithium-ion capacitors, Carbon, 202(2023), p. 175. doi: 10.1016/j.carbon.2022.11.030
      [29]
      Z.Y. Li, Y.X. Ye, Z.Z. Yao, et al., An antiferromagnetic metalloring pyrazolate (Pz) framework with [Cu122-OH)12(Pz)12] nodes for separation of C2H2/CH4 mixture, J. Mater. Chem. A, 6(2018), No. 40, p. 19681. doi: 10.1039/C8TA04498H
      [30]
      J.X. Wang, Z.L. Yan, G.C. Yan, et al., Spiral graphene coupling hierarchically porous carbon advances dual-carbon lithium-ion capacitor, Energy Storage Mater., 38(2021), p. 528. doi: 10.1016/j.ensm.2021.03.030
      [31]
      Y.Y. Zhu, M.M. Chen, Q. Li, C. Yuan, and C.Y. Wang, A porous biomass-derived anode for high-performance sodium-ion batteries, Carbon, 129(2018), p. 695. doi: 10.1016/j.carbon.2017.12.103
      [32]
      Y. Chen, K.L. Zhang, N. Li, et al., Electrochemically triggered decoupled transport behaviors in intercalated graphite: From energy storage to enhanced electromagnetic applications, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 33. doi: 10.1007/s12613-022-2416-5
      [33]
      L.Y. Zhao, X.Y. Zhao, L.T. Burke, J.C. Bennett, R.A. Dunlap, and M.N. Obrovac, Voronoi-tessellated graphite produced by low-temperature catalytic graphitization from renewable resources, ChemSusChem, 10(2017), No. 17, p. 3409. doi: 10.1002/cssc.201701211
      [34]
      D.P. Qiu, C.H. Kang, M. Li, et al., Biomass-derived mesopore-dominant hierarchical porous carbon enabling ultra-efficient lithium-ion storage, Carbon, 162(2020), p. 595. doi: 10.1016/j.carbon.2020.02.083
      [35]
      S.W. Lee, N. Yabuuchi, B.M. Gallant, et al., High-power lithium batteries from functionalized carbon-nanotube electrodes, Nat. Nanotechnol., 5(2010), No. 7, p. 531. doi: 10.1038/nnano.2010.116
      [36]
      H.B. Ouyang, Y.Y. Ma, Q.Q. Gong, et al., Tailoring porous structure and graphitic degree of seaweed-derived carbons for high-rate performance lithium-ion batteries, J. Alloys Compd., 823(2020), art. No. 153862. doi: 10.1016/j.jallcom.2020.153862
      [37]
      D.B. Kong, Y. Gao, Z.C. Xiao, X.H. Xu, X.L. Li, and L.J. Zhi, Rational design of carbon-rich materials for energy storage and conversion, Adv. Mater., 31(2019), No. 45, art. No. 1804973. doi: 10.1002/adma.201804973
      [38]
      A. Gomez-Martin, J. Martinez-Fernandez, M. Ruttert, et al., Iron-catalyzed graphitic carbon materials from biomass resources as anodes for lithium-ion batteries, ChemSusChem, 11(2018), No. 16, p. 2776. doi: 10.1002/cssc.201800831
      [39]
      D. Adekoya, H. Chen, H.Y. Hoh, et al., Hierarchical Co3O4@N-doped carbon composite as an advanced anode material for ultrastable potassium storage, ACS Nano, 14(2020), No. 4, p. 5027. doi: 10.1021/acsnano.0c01395
      [40]
      K. Tang, X.Q. Yu, J.P. Sun, H. Li, and X.J. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta, 56(2011), No. 13, p. 4869. doi: 10.1016/j.electacta.2011.02.119
      [41]
      J.M. Jiang, Z.W. Li, Z.T. Zhang, et al., Recent advances and perspectives on prelithiation strategies for lithium-ion capacitors, Rare Met., 41(2022), No. 10, p. 3322. doi: 10.1007/s12598-022-02050-w
      [42]
      X.Z. Sun, X. Zhang, W.J. Liu, et al., Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium-ion capacitor, Electrochim. Acta, 235(2017), p. 158. doi: 10.1016/j.electacta.2017.03.110
      [43]
      J.T. Su, Y.J. Wu, C.L. Huang, et al., Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors, Chem. Eng. J., 396(2020), art. No. 125314. doi: 10.1016/j.cej.2020.125314
      [44]
      G. Moreno-Fernández, M. Granados-Moreno, J.L. Gómez-Urbano, and D. Carriazo, Phosphorus-functionalized graphene for lithium-ion capacitors with improved power and cyclability, Batteries Supercaps, 4(2021), No. 3, p. 469. doi: 10.1002/batt.202000247
      [45]
      Z.Q. Shi, J. Zhang, J. Wang, J.L. Shi, and C.Y. Wang, Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors, Electrochim. Acta, 153(2015), p. 476. doi: 10.1016/j.electacta.2014.12.018
      [46]
      P. Yu, G.J. Cao, S. Yi, et al., Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors, Nanoscale, 10(2018), No. 13, p. 5906. doi: 10.1039/C8NR00380G
      [47]
      X. Wang, Z.K. Wang, X. Zhang, et al., Nitrogen-doped defective graphene aerogel as anode for all graphene-based lithium-ion capacitor, ChemistrySelect, 2(2017), No. 27, p. 8436. doi: 10.1002/slct.201701501
      [48]
      M.X. Zhang, X. Zhang, Z.X. Liu, H.F. Peng, and G.K. Wang, Ball milling-derived nanostructured Li3VO4 anode with enhanced surface-confined capacitive contribution for lithium-ion capacitors, Ionics, 26(2020), No. 8, p. 4129. doi: 10.1007/s11581-020-03537-1
      [49]
      J.G. Ju, L.T. Zhang, H.S. Shi, Z.J. Li, W.M. Kang, and B.W. Cheng, Three-dimensional porous carbon nanofiber loading MoS2 nanoflake-flowerballs as a high-performance anode material for Li-ion capacitor, Appl. Surf. Sci., 484(2019), p. 392. doi: 10.1016/j.apsusc.2019.04.099

    Catalog


    • /

      返回文章
      返回