留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(15)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  883
  • HTML全文浏览量:  349
  • PDF下载量:  87
  • 被引次数: 0
Fengjuan Zhang, Chenhui Liu, Srinivasakannan Chandrasekar, Yingwei Li, and Fuchang Xu, Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 91-105. https://doi.org/10.1007/s12613-023-2727-1
Cite this article as:
Fengjuan Zhang, Chenhui Liu, Srinivasakannan Chandrasekar, Yingwei Li, and Fuchang Xu, Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 91-105. https://doi.org/10.1007/s12613-023-2727-1
引用本文 PDF XML SpringerLink
研究论文

微波焙烧–碱浸法由钼精矿制备钼酸钠


  • 通讯作者:

    刘晨辉    E-mail: liu-chenhui@hotmail.com

    SrinivasakannanChandrasekar    E-mail: srinivasa.chandrasekar@ku.ac.ae

文章亮点

  • (1) 提出了一种通过微波氧化焙烧和碱浸出法从钼精矿中高效回收钼的新工艺。
  • (2) 钼酸钠的浸出率和含量达到96.24%和94.08%。
  • (3) 碳酸钠溶液可有效去除粗钼酸钠溶液中的铁和铝杂质。
  • 钼酸钠制备工艺存在能耗高、热效率低、三氧化钼原料要求高等缺点,为了实现对钼精矿资源的绿色高效开发,本文提出了微波强化焙烧及碱浸从钼精矿中高效回收钼,并制备钼酸钠产品的新工艺。热力学分析表明了氧化焙烧钼精矿的可行性,升温有利于MoO3的生成。研究了微波焙烧温度、保温时间和功率质量比分别对钼焙砂和浸出产物钼酸钠(Na2MoO4·2H2O)的影响。在优化工艺条件下:焙烧温度700°C、保温时间110 min和功率质量比110 W/g,钼的存在状态由硫化钼转化为三氧化钼。对钼焙砂碱浸制备钼酸钠工艺进行研究,确定优化浸出条件为氢氧化钠溶液浓度2.5 mol/L、液固比2 mL/g、浸出温度60°C、浸出液终点pH为8,获得钼酸钠的浸出率为96.24%。浸出除杂后的钼酸钠的含量达到94.08%。碳酸钠溶液调节浸出液pH可有效分离出铁、铝杂质。本研究避免了传统工艺的不足,利用微波冶金的优势制备出高品质的钼酸钠,为钼精矿的高值化利用提供了新思路。
  • Research Article

    Preparation of sodium molybdate from molybdenum concentrate by microwave roasting and alkali leaching

    + Author Affiliations
    • The preparation process of sodium molybdate has the disadvantages of high energy consumption, low thermal efficiency, and high raw material requirement of molybdenum trioxide, in order to realize the green and efficient development of molybdenum concentrate resources, this paper proposes a new process for efficient recovery of molybdenum from molybdenum concentrate and preparation of sodium molybdate by microwave-enhanced roasting and alkali leaching. Thermodynamic analysis indicated the feasibility of oxidation roasting of molybdenum concentrate. The effects of roasting temperature, holding time, and power-to-mass ratio on the oxidation product and leaching product sodium molybdate (Na2MoO4·2H2O) were investigated. Under the optimal process conditions: roasting temperature of 700°C, holding time of 110 min, and power-to-mass ratio of 110 W/g, the molybdenum state of existence was converted from MoS2 to MoO3. The process of preparing sodium molybdate by alkali leaching of molybdenum calcine was investigated, the optimal leaching conditions include a solution concentration of 2.5 mol/L, a liquid-to-solid ratio of 2 mL/g, a leaching temperature of 60°C, and leaching solution termination at pH 8. The optimum conditions result in a leaching rate of sodium molybdate of 96.24%. Meanwhile, the content of sodium molybdate reaches 94.08wt% after leaching and removing impurities. Iron and aluminum impurities can be effectively separated by adjusting the pH of the leaching solution with sodium carbonate solution. This research avoids the shortcomings of the traditional process and utilizes the advantages of microwave metallurgy to prepare high-quality sodium molybdate, which provides a new idea for the high-value utilization of molybdenum concentrate.
    • loading
    • [1]
      Q.S. Zhou, W.T. Yun, J.T, Xi, et al., Molybdenite–limestone oxidizing roasting followed by calcine leaching with ammonium carbonate solution, Trans. Nonferrous Met. Soc. China, 27(2017), No. 7, p. 1618. doi: 10.1016/S1003-6326(17)60184-5
      [2]
      W. Yang, B.J. Deng, L.Q. Hou, et al., Sulfur-fixation strategy toward controllable synthesis of molybdenum-based/carbon nanosheets derived from petroleum asphalt, Chem. Eng. J., 380(2020), art. No. 122552. doi: 10.1016/j.cej.2019.122552
      [3]
      O.P. Parenago, G.N. Kuz’mina, and T.A. Zaimovskaya, Sulfur-containing molybdenum compounds as high-performance lubricant additives (Review), Pet. Chem., 57(2017), No. 8, p. 631. doi: 10.1134/S0965544117080102
      [4]
      S. Kapri and S. Bhattacharyya, Molybdenum sulfide-reduced graphene oxide p–n heterojunction nanosheets with anchored oxygen generating manganese dioxide nanoparticles for enhanced photodynamic therapy, Chem. Sci., 9(2018), No. 48, p. 8982. doi: 10.1039/C8SC02508H
      [5]
      R.R. Mendel and F. Bittner, Cell biology of molybdenum, Biochim. Biophys. Acta, 1763(2006), No. 7, p. 621. doi: 10.1016/j.bbamcr.2006.03.013
      [6]
      B.N. Kaiser, K.L. Gridley, J. Ngaire Brady, T. Phillips, and S.D. Tyerman, The role of molybdenum in agricultural plant production, Ann. Bot., 96(2005), No. 5, p. 745. doi: 10.1093/aob/mci226
      [7]
      S.C. Wang and L.Z. Wang, Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production, Tungsten, 1(2019), No. 1, p. 19. doi: 10.1007/s42864-019-00006-9
      [8]
      W.W. Zhang, C.Y. Li, W.J. Wang, et al., Laminarin and sodium molybdate as efficient sustainable inhibitor for Q235 steel in sodium chloride solution, Colloids Surf., A, 637(2022), art. No. 128199. doi: 10.1016/j.colsurfa.2021.128199
      [9]
      D.Q. Wang, M. Wu, J. Ming, and J.J. Shi, Inhibitive effect of sodium molybdate on corrosion behaviour of AA6061 aluminium alloy in simulated concrete pore solutions, Constr. Build. Mater., 270(2021), art. No. 121463. doi: 10.1016/j.conbuildmat.2020.121463
      [10]
      Y. Zhou, Y. Zuo, and B. Lin, The compounded inhibition of sodium molybdate and benzotriazole on pitting corrosion of Q235 steel in NaCl+NaHCO3 solution, Mater. Chem. Phys., 192(2017), p. 86. doi: 10.1016/j.matchemphys.2017.01.083
      [11]
      O. Lopez-Garrity and G.S. Frankel, Corrosion inhibition of aluminum alloy 2024-T3 by sodium molybdate, J. Electrochem. Soc., 161(2013), No. 3, p. C95. doi: 10.1149/2.044403jes
      [12]
      M.M. Heravi and M. Zakeri, Use of sodium molybdate dihydrate as an efficient heterogeneous catalyst for the synthesis of benzopyranopyrimidine derivatives, Synth. React. Inorg. Met. Org. Nano Met. Chem., 43(2013), No. 2, p. 211. doi: 10.1080/15533174.2012.740717
      [13]
      F. Torun, B. Hostins, P. De Schryver, N. Boon, and J. De Vrieze, Molybdate effectively controls sulphide production in a shrimp pond model, Environ. Res., 203(2022), art. No. 111797. doi: 10.1016/j.envres.2021.111797
      [14]
      J. Bolitschek, S. Luidold, and M. O'Sullivan, A study of the impact of reduction conditions on molybdenum morphology, Int. J. Refract. Met. Hard Mater., 71(2018), p. 325. doi: 10.1016/j.ijrmhm.2017.11.037
      [15]
      L. Wang, G.H. Zhang, J.S. Wang, and K.C. Chou, Influences of different components on agglomeration behavior of MoS2 during oxidation roasting process in air, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2421. doi: 10.1007/s11663-016-0696-8
      [16]
      J.D. Lessard, D.G. Gribbin, and L.N. Shekhter, Recovery of rhenium from molybdenum and copper concentrates during the Looping Sulfide Oxidation process, Int. J. Refract. Met. Hard Mater., 44(2014), p. 1. doi: 10.1016/j.ijrmhm.2014.01.003
      [17]
      R. Jakhar, J.E. Yap, and R. Joshi, Microwave reduction of graphene oxide, Carbon, 170(2020), p. 277. doi: 10.1016/j.carbon.2020.08.034
      [18]
      J.P. Wang, T. Jiang, Y.J. Liu, and X.X. Xue, Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 160. doi: 10.1007/s12613-019-1720-1
      [19]
      Y. He, J. Liu, J.H. Liu, C.L. Chen, and C.L. Zhuang, Carbothermal reduction characteristics of oxidized Mn ore through conventional heating and microwave heating, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 221. doi: 10.1007/s12613-020-2037-9
      [20]
      S. Das, A.K. Mukhopadhyay, S. Datta, and D. Basu, Prospects of microwave processing: An overview, Bull. Mater. Sci., 31(2008), No. 7, p. 943. doi: 10.1007/s12034-008-0150-x
      [21]
      R.M. Anklekar, D.K. Agrawal, and R. Roy, Microwave sintering and mechanical properties of PM copper steel, Powder Metall., 44(2001), No. 4, p. 355. doi: 10.1179/pom.2001.44.4.355
      [22]
      J. Liu, C.H. Liu, Y. Hong, and L.B. Zhang, Basic study on microwave carbon-thermal reduction senarmontite (Sb2O3) to produce antimony: High-temperature dielectric properties and a microwave reduction mechanism, Powder Technol., 389(2021), p. 482. doi: 10.1016/j.powtec.2021.05.048
      [23]
      V.Kvapilová, Evaluation of microwave drying effects on historical brickwork and modern building materials, IOP Conf. Ser.: Mater. Sci. Eng., 867(2020), No. 1, art. No. 012026. doi: 10.1088/1757-899X/867/1/012026
      [24]
      M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd., 494(2010), No. 1-2, p. 175. doi: 10.1016/j.jallcom.2010.01.068
      [25]
      G.Y. Zhu, Z.W. Peng, L. Yang, H.M. Tang, X.L. Fang, and M.J. Rao, Facile preparation of thermal insulation materials by microwave sintering of ferronickel slag and fly ash cenosphere, Ceram. Int., 49(2023), No. 8, p. 11978. doi: 10.1016/j.ceramint.2022.12.048
      [26]
      P. Parhi and P. Misra, Hydrometallurgical investigation routed through microwave (MW) assisted leaching and solvent extraction using ionic liquids for extraction and recovery of molybdenum from spent desulphurization catalyst, Inorg. Chem. Commun., 149(2023), p. 110394. doi: 10.1016/j.inoche.2023.110394
      [27]
      P.K. Parhi and P.K. Misra, Environmental friendly approach for selective extraction and recovery of molybdenum (Mo) from a sulphate mediated spent Ni–Mo/Al2O3 catalyst baked leach liquor, J. Environ. Manage., 306(2022), art. No. 114474. doi: 10.1016/j.jenvman.2022.114474
      [28]
      S. Kan, K. Benzeşik, Ö.C. Odabaş, and O. Yücel, Investigation of molybdenite concentrate roasting in chamber and rotary furnaces, Min. Metall. Explor., 38(2021), No. 3, p. 1597. doi: s42461-021-00429-4
      [29]
      Y.L. Jiang, B.G. Liu, P. Liu, J.H. Peng, L.B. Zhang, Dielectric characterization and microwave roasting of molybdenite concentrates at 915 MHz frequency, J. Harbin Inst. Technol. (New Series), 26(2019), No. 3, p. 58. doi: 10.11916/j.issn.1005-9113.17072
      [30]
      M. Pervaiz, A. Munawar, S. Hussain, et al., A green approach for extraction of ammonium molybdate from molybdenite using indigenous resources, Pol. J. Environ. Stud., 30(2021), No. 2, p. 1771. doi: 10.15244/pjoes/124113
      [31]
      M.P. Zhang, C.H. Liu, X.J. Zhu, et al., Preparation of ammonium molybdate by oxidation roasting of molybdenum concentrate: A comparison of microwave roasting and conventional roasting, Chem. Eng. Process.: Process. Intensif., 167(2021), art. No. 108550. doi: 10.1016/j.cep.2021.108550
      [32]
      M.D. Lane, J.L. Bishop, M.D. Dyar, et al., Mid-infrared emission spectroscopy and visible/near-infrared reflectance spectroscopy of Fe-sulfate minerals, Am. Mineral., 100(2015), No. 1, p. 66. doi: 10.2138/am-2015-4762
      [33]
      L. Wang, G.H. Zhang, J. Dang, and K.C. Chou, Oxidation roasting of molybdenite concentrate, Trans. Nonferrous Met. Soc. China, 25(2015), No. 12, p. 4167. doi: 10.1016/S1003-6326(15)64067-5
      [34]
      H. Sun, G.H. Li, Q.Z. Bu, et al., Features and mechanisms of self-sintering of molybdenite during oxidative roasting, Trans. Nonferrous Met. Soc. China, 32(2022), No. 1, p. 307. doi: 10.1016/S1003-6326(22)65796-0
      [35]
      C. Kansomket, P. Laokhen, T. Yingnakorn, T. Patcharawit, and S. Khumkoa, Extraction of molybdenum from a spent HDS catalyst using alkali leaching reagent, J. Met. Mater. Miner., 32(2022), No. 2, p. 88. doi: 10.55713/jmmm.v32i2.1252
      [36]
      C. Wang, Y.F. Guo, S. Wang, et al., Characteristics of the reduction behavior of zinc ferrite and ammonia leaching after roasting, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 26. doi: 10.1007/s12613-019-1858-x
      [37]
      Y.I. Nam, S.Y. Seo, Y.C. Kang, M.J. Kim, G. Senanayake, and T. Tran, Purification of molybdenum trioxide calcine by selective leaching of copper with HCl–NH4Cl, Hydrometallurgy, 109(2011), No. 1-2, p. 9. doi: 10.1016/j.hydromet.2011.05.001
      [38]
      H. Sun, J.J. Yu, G.H. Li, et al., Co-volatilizing-water leaching process for efficient utilization of rhenium-bearing molybdenite concentrate, Hydrometallurgy, 192(2020), art. No. 105284. doi: 10.1016/j.hydromet.2020.105284
      [39]
      J.H. Chen, D. Tang, S.P. Zhong, W. Zhong, and B.Z. Li, The influence of micro-cracks on copper extraction by bioleaching, Hydrometallurgy, 191(2020), art. No. 105243. doi: 10.1016/j.hydromet.2019.105243
      [40]
      L.P. Jia, Z.W. Zhao, X.H. Liu, and L.H. He, Recovery of valuable metals from molybdenum-removal sludge by reverse sulfurization leaching, Hydrometallurgy, 193(2020), art. No. 105323. doi: 10.1016/j.hydromet.2020.105323
      [41]
      Y.B. Li, Q.H. Xiao, Z.M. Li, and Gerson A, Enhanced leaching of Mo by mechanically co-grinding and activating MoS2 with NaClO3 as an oxidizing additive, Hydrometallurgy, 203(2021), art. No. 105625. doi: 10.1016/j.hydromet.2021.105625
      [42]
      S. Ali, Y. Iqbal, I. Khan, et al., Hydrometallurgical leaching and kinetic modeling of low-grade manganese ore with banana peel in sulfuric acid, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 193. doi: 10.1007/s12613-020-2069-1
      [43]
      J. Liu, Z.F. Qiu, J. Yang, L.M. Cao, and W. Zhang, Recovery of Mo and Ni from spent acrylonitrile catalysts using an oxidation leaching–chemical precipitation technique, Hydrometallurgy, 164(2016), p. 64. doi: 10.1016/j.hydromet.2016.05.003
      [44]
      Z.X. Liu, L. Sun, J. Hu, et al., Selective extraction of molybdenum from copper concentrate by air oxidation in alkaline solution, Hydrometallurgy, 169(2017), p. 9. doi: 10.1016/j.hydromet.2016.11.014
      [45]
      P. Wang, Y.J. Pan, X. Sun, and Y.Q. Zhang, Leaching molybdenum from a low-grade roasted molybdenite concentrate, SN Appl. Sci., 1(2019), No. 4, art. No. 311. doi: 10.1007/s42452-019-0326-6
      [46]
      M. Vosough, G.R. Khayati, and S. Sharafi, Ammonia leaching of MoO3 concentrate: Finding the reaction mechanism and kinetics analysis, Chem. Pap., 76(2022), No. 5, p. 3227. doi: 10.1007/s11696-022-02098-z
      [47]
      Z.P. Zhao, M. Guo, and M. Zhang, Extraction of molybdenum and vanadium from the spent diesel exhaust catalyst by ammonia leaching method, J. Hazard. Mater., 286(2015), p. 402. doi: 10.1016/j.jhazmat.2014.12.063
      [48]
      Y. Liu, Y.F. Zhang, F.F. Chen, and Y. Zhang, The alkaline leaching of molybdenite flotation tailings associated with galena, Hydrometallurgy, 129-130(2012), p. 30. doi: 10.1016/j.hydromet.2012.07.017
      [49]
      Y. Guo, H.Y. Li, Y.H. Yuan, et al., Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 974. doi: 10.1007/s12613-020-2105-1
      [50]
      G.J. Olson and T.R. Clark, Bioleaching of molybdenite, Hydrometallurgy, 93(2008), No. 1-2, p. 10. doi: 10.1016/j.hydromet.2008.02.013
      [51]
      Y.F. Fu, Q.G. Xiao, Y.Y. Gao, P.G. Ning, H.B. Xu, and Y. Zhang, Pressure aqueous oxidation of molybdenite concentrate with oxygen, Hydrometallurgy, 174(2017), p. 131. doi: 10.1016/j.hydromet.2017.10.001
      [52]
      J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Synergistic effect of microwave irradiation and CaF2 on vanadium leaching, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 156. doi: 10.1007/s12613-017-1390-9
      [53]
      S.A. Kapole, B.A. Bhanvase, D.V. Pinjari, et al., Investigation of corrosion inhibition performance of ultrasonically prepared sodium zinc molybdate nanopigment in two-pack epoxy-polyamide coating, Compos. Interfaces, 21(2014), No. 9, p. 833. doi: 10.1080/15685543.2014.963479
      [54]
      S. Nakagaki, A. Bail, V.C. dos Santos, et al., Use of anhydrous sodium molybdate as an efficient heterogeneous catalyst for soybean oil methanolysis, Appl. Catal. A, 351(2008), No. 2, p. 267. doi: 10.1016/j.apcata.2008.09.026
      [55]
      Y. Mochizuki, J. Bud, J.Q. Liu, M. Takahashi, and N. Tsubouchi, Adsorption of phosphate from aqueous using iron hydroxides prepared by various methods, J. Environ. Chem. Eng., 9(2021), No. 1, art. No. 104645. doi: 10.1016/j.jece.2020.104645
      [56]
      S.Q. Wang, J. Xie, J.D. Hu, H.Y. Qin, and Y.L. Cao, Fe-doped α-MoO3 nanoarrays: Facile solid-state synthesis and excellent xylene-sensing performance, Appl. Surf. Sci., 512(2020), art. No. 145722. doi: 10.1016/j.apsusc.2020.145722

    Catalog


    • /

      返回文章
      返回