Cite this article as:

Wenxing Cao, Jiancheng Shu, Jiaming Chen, Zihan Li, Songshan Zhou, Shushu Liao, Mengjun Chen, and Yong Yang, Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.531-538. https://dx.doi.org/10.1007/s12613-023-2729-z
Wenxing Cao, Jiancheng Shu, Jiaming Chen, Zihan Li, Songshan Zhou, Shushu Liao, Mengjun Chen, and Yong Yang, Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.531-538. https://dx.doi.org/10.1007/s12613-023-2729-z
引用本文 PDF XML SpringerLink

基于矿浆电解法强化回收富铁电解锰渣中的铁

摘要: 富铁电解锰渣是电解金属锰生产过程排放的一般工业固废,其中含有大量的铁锰资源以及重金属,直接堆存不仅造成资源浪费,且污染周边环境。本研究采用矿浆电解技术从富铁电解锰渣中回收高纯铁粉,探究了富铁电解锰渣和H2SO4质量比、电流密度、反应温度和电解时间对Fe浸出率和电流效率的影响规律。研究结果表明,在H2SO4与富铁电解锰渣质量比1:2.5、反应温度60℃、电流密度30 mA/cm2、反应时间8 h条件下,Fe的浸出率、电流效率和纯度分别达到92.58%、80.65%和98.72wt%。此外,矿浆电解得到的阴极铁粉顽力达到54.5A/m,达到高级磁性铁粉等级(DT4A矫顽力标准)。本研究为富铁电解锰渣中铁资源的回收提供了一种新的思路。

 

Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis

Abstract: Iron-rich electrolytic manganese residue (IREMR) is an industrial waste produced during the processing of electrolytic metal manganese, and it contains certain amounts of Fe and Mn resources and other heavy metals. In this study, the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR. The effects of IREMR and H2SO4 mass ratio, current density, reaction temperature, and electrolytic time on the leaching and current efficiencies of Fe were studied. According to the results, high-purity Fe powder can be recovered from the cathode plate, and the slurry electrolyte can be recycled. The leaching efficiency, current efficiency, and purity of Fe reached 92.58%, 80.65%, and 98.72wt%, respectively, at a 1:2.5 mass ratio of H2SO4 and IREMR, reaction temperature of 60°C, electric current density of 30 mA/cm2, and reaction time of 8 h. In addition, vibrating sample magnetometer (VSM) analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m, which reached the advanced magnetic grade of electrical pure-iron powder (DT4A coercivity standard). The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.

 

/

返回文章
返回