Cite this article as: |
Wenxing Cao, Jiancheng Shu, Jiaming Chen, Zihan Li, Songshan Zhou, Shushu Liao, Mengjun Chen, and Yong Yang, Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 531-538. https://doi.org/10.1007/s12613-023-2729-z |
舒建成 E-mail: sjcees@126.com
[1] |
D.J. He, J.C. Shu, R. Wang, et al., A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse, J. Hazard. Mater., 418(2021), art. No. 126235. doi: 10.1016/j.jhazmat.2021.126235
|
[2] |
R.R. Zhang, X.T. Ma, X.X. Shen, et al., Life cycle assessment of electrolytic manganese metal production, J. Clean. Prod., 253(2020), art. No. 119951. doi: 10.1016/j.jclepro.2019.119951
|
[3] |
J.M. Lu, D. Dreisinger, and T. Glück, Electrolytic manganese metal production from manganese carbonate precipitate, Hydrometallurgy, 161(2016), p. 45. doi: 10.1016/j.hydromet.2016.01.010
|
[4] |
J.C. Shu, R.L. Liu, Z.H. Liu, H.L. Chen, and C.Y. Tao, Enhanced extraction of manganese from electrolytic manganese residue by electrochemical, J. Electroanal. Chem., 780(2016), p. 32. doi: 10.1016/j.jelechem.2016.08.033
|
[5] |
M.G. Lei, B.Z. Ma, D.Y. Lv, C.Y. Wang, E. Asselin, and Y.Q. Chen, A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration, Hydrometallurgy., 199(2021), art. No. 105533. doi: 10.1016/j.hydromet.2020.105533
|
[6] |
S. Keshavarz, F. Faraji, F. Rashchi, and M. Mokmeli, Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies, J. Environ. Manage., 285(2021), art. No. 112153. doi: 10.1016/j.jenvman.2021.112153
|
[7] |
J.C. Shu, R.L. Liu, Z.H. Liu, H.P. Wu, Y.L. Chen, and C.Y. Tao, Enhanced discharge performance of electrolytic manganese anode slime using calcination and pickling approach, J. Electroanal. Chem., 806(2017), p. 15. doi: 10.1016/j.jelechem.2017.10.041
|
[8] |
Y.L. Deng, J.C. Shu, T.Y. Lei, X.F. Zeng, B. Li, and M.J. Chen, A green method for Mn2+ and $ {\mathrm{N}\mathrm{H}}_{4}^{+} $–N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings, Sep. Purif. Technol., 270(2021), art. No. 118820. doi: 10.1016/j.seppur.2021.118820
|
[9] |
B. Li, J.C. Shu, Y.H. Wu, et al., Enhanced removal of Mn2+ and $ {\mathrm{N}\mathrm{H}}_{4}^{+} $–N in electrolytic manganese residue leachate by electrochemical and modified phosphate ore flotation tailings, Sep. Purif. Technol., 291(2022), art. No. 120959. doi: 10.1016/j.seppur.2022.120959
|
[10] |
T.Y. Yang, Y. Xue, X.M. Liu, and Z.Q. Zhang, Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review, Process. Saf. Environ. Prot., 157(2022), p. 509. doi: 10.1016/j.psep.2021.10.031
|
[11] |
S.C. He, D.Y. Jiang, M.H. Hong, and Z.H. Liu, Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review, J. Clean. Prod., 306(2021), art. No. 127224. doi: 10.1016/j.jclepro.2021.127224
|
[12] |
J. Li, Y.C. Liu, X. Ke, X.K. Jiao, R. Li, and C.J. Shi, Geopolymer synthesized from electrolytic manganese residue and lead-zinc smelting slag: Compressive strength and heavy metal immobilization, Cem. Concr. Compos., 134(2022), art. No. 104806. doi: 10.1016/j.cemconcomp.2022.104806
|
[13] |
D. Sun, L. Yang, N. Liu, et al., Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese, Chin. J. Chem. Eng., 28(2020), No. 3, p. 864. doi: 10.1016/j.cjche.2019.11.013
|
[14] |
D.Q. Wang, J.R. Fang, Q. Wang, and Y.J. Liu, Utilizing desulphurized electrolytic-manganese residue as a mineral admixture: A feasibility study, Cem. Concr. Compos., 134(2022), art. No. 104822. doi: 10.1016/j.cemconcomp.2022.104822
|
[15] |
P.X. Su, Q.Y. Wan, Y. Yang, et al., Hydroxylation of electrolytic manganese anode slime with EDTA-2Na and its adsorption of methylene blue, Sep. Purif. Technol., 278(2021), art. No. 119526. doi: 10.1016/j.seppur.2021.119526
|
[16] |
J.Q. Wang, S.Y. Chen, X.F. Zeng, et al., Recovery of high purity copper from waste printed circuit boards of mobile phones by slurry electrolysis with ammonia-ammonium system, Sep. Purif. Technol., 275(2021), art. No. 119180. doi: 10.1016/j.seppur.2021.119180
|
[17] |
K.X. Liu, S.Q. Huang, Y.X. Jin, L. Ma, W.X. Wang, and J.C.H. Lam, A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol, J. Hazard. Mater., 433(2022), art. No. 128702. doi: 10.1016/j.jhazmat.2022.128702
|
[18] |
F.F. Li, M.J. Chen, J.C. Shu, et al., Copper and gold recovery from CPU sockets by one-step slurry electrolysis, J. Clean. Prod., 213(2019), p. 673. doi: 10.1016/j.jclepro.2018.12.161
|
[19] |
J.T. Wu, B. Xu, Y.J. Zhou, Z.L. Dong, S.G. Zhong, and T. Jiang, A novel process of reverse flotation-hydrogen reduction for preparation of high-purity iron powder with superior magnetite concentrate, Sep. Purif. Technol., 307(2023), art. No. 122784. doi: 10.1016/j.seppur.2022.122784
|
[20] |
D. Chen, S. Chen, H.W. Guo, et al., A novel metallurgical technique for the preparation of soft magnetic iron carbide from low-grade siderite, J. Alloys Compd., 928(2022), art. No. 167186. doi: 10.1016/j.jallcom.2022.167186
|
[21] |
S. Iimura, T. Sasaki, K. Hanzawa, S. Matsuishi, and H. Hosono, High pressure synthesis, physical properties and electronic structure of monovalent iron compound LaFePH, J. Solid State Chem., 315(2022), art. No. 123546. doi: 10.1016/j.jssc.2022.123546
|
[22] |
J.L. Lv and H.Y. Luo, The effects of cold rolling temperature on corrosion resistance of pure iron, Appl. Surf. Sci., 317(2014), p. 125. doi: 10.1016/j.apsusc.2014.08.065
|
[23] |
L. Khan, K. Sato, S. Okuyama, et al., Ultra-high-purity iron is a novel and very compatible biomaterial, J. Mech. Behav. Biomed. Mater., 106(2020), art. No. 103744. doi: 10.1016/j.jmbbm.2020.103744
|
[24] |
J. Qiu, J. Han, R. Schoell, et al., Electrical properties of thermal oxide scales on pure iron in liquid lead-bismuth eutectic, Corros. Sci., 176(2020), art. No. 109052. doi: 10.1016/j.corsci.2020.109052
|
[25] |
H. Matsumiya, T. Kato, and M. Hiraide, Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal, Talanta., 119(2014), p. 505. doi: 10.1016/j.talanta.2013.11.057
|
[26] |
Q. Liang, J.Q. Wang, S.Y. Chen, et al., Electrolyte circulation: Metal recovery from waste printed circuit boards of mobile phones by alkaline slurry electrolysis, J. Clean. Prod., 409(2023), art. No. 137223. doi: 10.1016/j.jclepro.2023.137223
|
[27] |
J.Q. Wang, Z.M. Huang, D.Z. Yang, et al., A semi-scaled experiment for metals separating and recovering from waste printed circuit boards by slurry electrolysis, Process. Saf. Environ. Prot., 147(2021), p. 37. doi: 10.1016/j.psep.2020.09.030
|
[28] |
Y.X. Zhao, M.M. Sun, Y.L. Zhang, Y.Z. Zhao, and H.H. Ge, Efficient and rapid electrocatalytic degradation of polyethylene glycol by ammonium jarosite, J. Environ. Chem. Eng., 10(2022), No. 3, art. No. 107795. doi: 10.1016/j.jece.2022.107795
|
[29] |
J.L. Yang, J.G. Liu, H.X. Xiao, and S.J. Ma, Sulfuric acid leaching of high iron-bearing zinc calcine, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1211. doi: 10.1007/s12613-017-1513-3
|
[30] |
B.J. Wang, L.L. Mu, S. Guo, and Y.F. Bi, Lead leaching mechanism and kinetics in electrolytic manganese anode slime, Hydrometallurgy., 183(2019), p. 98. doi: 10.1016/j.hydromet.2018.11.015
|
[31] |
T.Y. Lei, J.C. Shu, Y.L. Deng, et al., Enhanced recovery of copper from reclaimed copper smelting fly ash via leaching and electrowinning processes, Sep. Purif. Technol., 273(2021), art. No. 118943. doi: 10.1016/j.seppur.2021.118943
|
[32] |
J.M. Gao, B. Wang, W.J. Li, L. Cui, Y.X. Guo, and F.Q. Cheng, High-efficiency leaching of Al and Fe from fly ash for preparation of polymeric aluminum ferric chloride sulfate coagulant for wastewater treatment, Sep. Purif. Technol., 306(2023), art. No. 122545. doi: 10.1016/j.seppur.2022.122545
|
[33] |
Y.G. Zhang, M.J. Chen, Q.X. Tan, B. Wang, and S. Chen, Recovery of copper from WPCBs using slurry electrolysis with ionic liquid [BSO3HPy]∙HSO4, Hydrometallurgy., 175(2018), p. 150. doi: 10.1016/j.hydromet.2017.11.004
|
[34] |
E. Demircilioğlu, E. Teomete, E. Schlangen, and F.J. Baeza, Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete, Constr. Build. Mater., 224(2019), p. 420. doi: 10.1016/j.conbuildmat.2019.07.091
|
[35] |
R. Kallio, U. Lassi, T. Kauppinen, et al., Leaching characteristics of Sc-enriched, Fe-depleted acidic slags, Miner. Eng., 189(2022), art. No. 107901. doi: 10.1016/j.mineng.2022.107901
|
[36] |
B. Miranda-Alcántara, F. Castañeda-Záldivar, L. Ortíz-Frade, R. Antaño, and F.F. Rivera, Electrochemical study of iron deposit in acid media for its recovery from spent pickling baths regeneration, J. Electroanal. Chem., 901(2021), art. No. 115805. doi: 10.1016/j.jelechem.2021.115805
|
[37] |
M.C. Nolasco, L.F. Flores, E.J. Gutiérrez, et al., Acid dissolution of jarosite-type compounds: Effect of the incorporation of divalent cations into the structure on the reaction rate, Hydrometallurgy., 212(2022), art. No. 105907. doi: 10.1016/j.hydromet.2022.105907
|
[38] |
Y. Shi, K.X. Jiang, T.A. Zhang, and X.F. Zhu, Electrolysis designed for clean production of selective iron products from coal fly ash leachate, Hydrometallurgy., 203(2021), art. No. 105617. doi: 10.1016/j.hydromet.2021.105617
|
[39] |
P.F. Liu and Y.F. Zhang, Crystallization of ammonium jarosite from ammonium ferric sulfate solutions, Hydrometallurgy., 189(2019), art. No. 105133. doi: 10.1016/j.hydromet.2019.105133
|
[40] |
J.C. Shu, H.P. Wu, M.J. Chen, et al., Simultaneous optimizing removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using chemical equilibrium model, Ecotoxicol. Environ. Saf., 172(2019), p. 273. doi: 10.1016/j.ecoenv.2019.01.071
|
[41] |
M. Ristić, S. Musić, and Z. Orehovec, Thermal decomposition of synthetic ammonium jarosite, J. Mol. Struct., 744-747(2005), p. 295. doi: 10.1016/j.molstruc.2004.10.051
|