留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  520
  • HTML全文浏览量:  177
  • PDF下载量:  14
  • 被引次数: 0
Jinge Feng, Jue Tang, Zichuan Zhao, Mansheng Chu, Aijun Zheng, Xiaobing Li, and Xiao’ai Wang, Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace: Behavior analysis and mechanism evolution, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 282-291. https://doi.org/10.1007/s12613-023-2730-6
Cite this article as:
Jinge Feng, Jue Tang, Zichuan Zhao, Mansheng Chu, Aijun Zheng, Xiaobing Li, and Xiao’ai Wang, Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace: Behavior analysis and mechanism evolution, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 282-291. https://doi.org/10.1007/s12613-023-2730-6
引用本文 PDF XML SpringerLink
研究论文

钛对氢冶金竖炉球团粘结的影响:行为分析和机理演变


  • 通讯作者:

    唐珏    E-mail: tangj@smm.neu.edu.cn

文章亮点

  • (1) 在直接还原过程中,TiO2可以有效地抑制球团的还原粘结行为,还原粘结指数随着TiO2添加量的增加而降低。
  • (2) 低还原温度下球团的粘结行为主要取决于相邻球团界面处渣相的连接,并伴有较低的粘结强度,当还原温度升高,金属铁的互连成为导致球团粘结行为的主导因素。
  • (3) 与低还原温度相比,TiO2在高还原温度下对球团的还原粘结行为影响较大。
  • 摘 要; 基于氢冶金的气基竖炉直接还原是高效低碳冶炼钒钛磁铁矿的一种很有前景的技术。然而,在该过程中,由于金属铁在相邻球团接触表面之间的聚集会发生球团的粘结行为,对气基竖炉的连续操作有严重的负面影响。作为钒钛磁铁矿综合利用新方法的基础工作的一部分,本研究旨在研究TiO2对氢气气氛下不同还原条件的球团粘结行为和机理演变的影响。此外,通过微观形貌表征详细阐明了不同TiO2添加量和还原温度的球团在还原过程中的粘附机理。研究结果表明,随着TiO2添加量的增加,粘结指数呈线性下降。这种现象可归因于还原过程中未还原的FeTiO3的增加,导致粘结界面处金属铁互连的强度降低。在1100°C时,当TiO2的添加量从0wt%增加到15wt%,粘结指数从0.71%增加到59.91%。在低还原温度下,球团的粘结行为主要取决于相邻球团界面处渣相的连接,并伴有较低的粘结强度。当还原温度升高,金属铁的互连成为导致球团粘结行为的主导因素,粘结指数随还原温度的升高而急剧增加。与低还原温度相比,TiO2在高还原温度下对球团的还原粘结行为影响较大。
  • Research Article

    Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace: Behavior analysis and mechanism evolution

    + Author Affiliations
    • Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium–titanium magnetite. However, in this process, the sticking of pellets occurs due to the aggregation of metallic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation. This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions. Results showed that the sticking index (SI) decreased linearly with the increasing TiO2 addition. This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction, leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface. When the TiO2 addition amount was raised from 0 to 15wt% at 1100°C, the SI also increased from 0.71% to 59.91%. The connection of the slag phase could be attributed to the sticking at a low reduction temperature, corresponding to the low sticking strength. Moreover, the interconnection of metallic iron became the dominant factor, and the SI increased sharply with the increase in reduction temperature. TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature.
    • loading
    • [1]
      W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, J. Tang, and Z.W. Ying, Reduction behavior of vanadium-titanium magnetite carbon composite hot briquette in blast furnace process, Powder Technol., 342(2019), p. 214. doi: 10.1016/j.powtec.2018.09.069
      [2]
      W. Zhang, G. Tang, J.W. Yan, et al., The decolorization of methyl orange by persulfate activated with natural vanadium-titanium magnetite, Appl. Surf. Sci., 509(2020), art. No. 144886. doi: 10.1016/j.apsusc.2019.144886
      [3]
      X.F. Guo, S.J. Dai, and Q.Q. Wang, Influence of different comminution flowsheets on the separation of vanadium titano-magnetite, Miner. Eng., 149(2020), art. No. 106268. doi: 10.1016/j.mineng.2020.106268
      [4]
      Y.Y. Zhao, F.G. Zeng, H.Z. Liang, et al., Chromium and vanadium bearing nanominerals and ultra-fine particles in a super-high-organic-sulfur coal from Ganhe coalmine, Yanshan Coalfield, Yunnan, China, Fuel, 203(2017), p. 832. doi: 10.1016/j.fuel.2017.05.044
      [5]
      S. Ren, J.L. Zhang, X.D. Xing, B.X. Su, Z. Wang, and B.J. Yan, Effect of B2O3 on phase compositions of high Ti bearing titanomagnetite sinter, Ironmaking Steelmaking, 41(2014), No. 7, p. 500. doi: 10.1179/1743281213Y.0000000145
      [6]
      W. Zhao, M.S. Chu, H.T. Wang, Z.G. Liu, and Y.T. Tang, Novel blast furnace operation process involving charging with low-titanium vanadium–titanium magnetite carbon composite hot briquette, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 501. doi: 10.1007/s12613-016-1261-9
      [7]
      Y.J. Zhang, Q. Yue, X.C. Chai, Q. Wang, Y.Q. Lu, and W. Ji, Analysis of process parameters on energy utilization and environmental impact of hydrogen metallurgy, J. Cleaner Prod., 361(2022), art. No. 132289. doi: 10.1016/j.jclepro.2022.132289
      [8]
      S.H. Zhang, B.W. Yi, E. Worrell, et al., Integrated assessment of resource-energy-environment nexus in China’s iron and steel industry, J. Cleaner Prod., 232(2019), p. 235. doi: 10.1016/j.jclepro.2019.05.392
      [9]
      S. Ren, J.L. Zhang, L.S. Wu, B.X. Su, X.D. Xing, and G.Y. Zhu, Effect of TiO2 on equilibrium phase sinter at oxygen partial pressure of 5 × 10–3 atm, Ironmaking Steelmaking, 41(2014), No. 2, p. 132. doi: 10.1179/1743281213Y.0000000111
      [10]
      S. Ren, Q.C. Liu, J.L. Zhang, M. Chen, X.D. Ma, and B.J. Zhao, Laboratory study of phase transitions and mechanism of reduction of FeO from high Ti-bearing blast furnace primary slag by graphite, Ironmaking Steelmaking, 42(2015), No. 2, p. 117. doi: 10.1179/1743281214Y.0000000209
      [11]
      J. Tang, M.S. Chu, C. Feng, Y.T. Tang, and Z.G. Liu, Melting Separation behavior and mechanism of high-chromium vanadium–bearing titanomagnetite metallized pellet got from gas-based direct reduction, ISIJ Int., 56(2016), No. 2, p. 210. doi: 10.2355/isijinternational.ISIJINT-2015-448
      [12]
      L. Wang, P.M. Guo, L.B. Kong, and P. Zhao, Industrial application prospects and key issues of the pure-hydrogen reduction process, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1922. doi: 10.1007/s12613-022-2478-4
      [13]
      Z.C. Zhao, J. Tang, M.S. Chu, et al., Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1891. doi: 10.1007/s12613-022-2494-4
      [14]
      S. Song and Y. Kang, Effect of carbon addition on direct reduction behavior of low quality magnetite ore by reducing gas atmosphere, Metals, 11(2021), No. 9, art. No. 1404. doi: 10.3390/met11091404
      [15]
      P. Prusti, S.S. Rath, N. Dash, B.C. Meikap, and S.K. Biswal, Pelletization of hematite and synthesized magnetite concentrate from a banded hematite quartzite ore: A comparison study, Adv. Powder Technol., 32(2021), No. 10, p. 3735. doi: 10.1016/j.apt.2021.08.025
      [16]
      Y. Yu, B.K. Li, C.J. Wang, Z.Z. Fang, X. Yang, and F. Tsukihashi, Evaluation and synergy of material and energy in the smelting process of ferrochrome pellets in steel belt sintering-submerged arc furnace, Energy, 179(2019), p. 792. doi: 10.1016/j.energy.2019.05.061
      [17]
      S. Hayashi and Y. Iguchi, Factors affecting the sticking of fine iron ores during fluidized bed reduction, ISIJ Int., 32(1992), No. 9, p. 962. doi: 10.2355/isijinternational.32.962
      [18]
      Y.L. Sui, Y.F. Guo, T. Jiang, and G.Z. Qiu, Sticking behaviour of vanadium titano-magnetite oxidised pellets during gas-based reduction and its prevention, Ironmaking Steelmaking, 44(2017), No. 3, p. 185. doi: 10.1080/03019233.2016.1200284
      [19]
      Z.X. Di, Z.Y. Li, R.F. Wei, et al., Sticking behaviour and mechanism of iron ore pellets in COREX pre-reduction shaft furnace, Ironmaking Steelmaking, 46(2019), No. 2, p. 159. doi: 10.1080/03019233.2017.1361079
      [20]
      L.Y. Yi, Z.C. Huang, T.H. Li, and T. Jiang, Sticking of iron ore pellets in direct reduction with hydrogen and carbon monoxide: Behavior and prevention, J. Cent. South Univ., 21(2014), No. 2, p. 506. doi: 10.1007/s11771-014-1968-6
      [21]
      L.Y. Yi, Z.C. Huang, and T. Jiang, Sticking of iron ore pellets during reduction with hydrogen and carbon monoxide mixtures: Behavior and mechanism, Powder Technol., 235(2013), p. 1001. doi: 10.1016/j.powtec.2012.11.043
      [22]
      K.S. Abdel-Halim, M.I. Nasr, and A.A. El-Geassy, Developed model for reduction mechanism of iron ore pellets under load, Ironmaking Steelmaking, 38(2011), No. 3, p. 189. doi: 10.1179/030192310X12816231892305
      [23]
      B. Zhang, Z. Wang, X.Z. Gong, and Z.C. Guo, A comparative study of influence of fluidized conditions on sticking time during reduction of Fe2O3 particles with CO, Powder Technol., 225(2012), p. 1. doi: 10.1016/j.powtec.2012.02.009
      [24]
      J.X. Li, R.F. Wei, H.M. Long, P. Wang, and D.Q. Cang, Sticking behavior of iron ore–coal pellets and its inhibition, Powder Technol., 262(2014), p. 30. doi: 10.1016/j.powtec.2014.04.059
      [25]
      J.F. Gransden and J.S. Sheasby, The sticking of iron ore during reduction by hydrogen in a fluidized bed, Can. Metall. Q., 13(1974), No. 4, p. 649. doi: 10.1179/cmq.1974.13.4.649
      [26]
      D.R. Higgins, N.B. Gray, and M.R. Davidson, Simulating particle agglomeration in the flash smelting reaction shaft, Miner. Eng., 22(2009), No. 14, p. 1251. doi: 10.1016/j.mineng.2009.07.005
      [27]
      M. Bartels, W.G. Lin, J. Nijenhuis, F. Kapteijn, and Ruud van Ommen J, Agglomeration in fluidized beds at high temperatures: Mechanisms, detection and prevention, Prog. Energy Combust. Sci., 34(2008), No. 5, p. 633. doi: 10.1016/j.pecs.2008.04.002
      [28]
      J.L. Zhang, J. Schenk, Z.J. Liu, and K.J. Li, Editorial for special issue on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1817. doi: 10.1007/s12613-022-2535-z
      [29]
      J.L. Zhang, Y. Li, Z.J. Liu, et al., Isothermal kinetic analysis on reduction of solid/liquid wustite by hydrogen, Int. J. Miner. Metall. Mater., 29(2022), No. 10, p. 1830. doi: 10.1007/s12613-022-2518-0
      [30]
      Z. Kang, Q.L. Liao, Z. Zhang, and Y. Zhang, Carbon neutrality orientates the reform of the steel industry, Nat. Mater., 21(2022), p. 1094. doi: 10.1038/s41563-022-01370-7
      [31]
      B.C. McLellan, Potential opportunities and impacts of a hydrogen economy for the Australian minerals industry, Int. J. Hydrogen Energy, 34(2009), No. 9, p. 3571. doi: 10.1016/j.ijhydene.2009.03.008
      [32]
      J. Tang, M.S. Chu, F. Li, C. Feng, Z.G. Liu, and Y.S. Zhou, Development and progress on hydrogen metallurgy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 713. doi: 10.1007/s12613-020-2021-4
      [33]
      W. Li, N. Wang, G.Q. Fu, M.S. Chu, and M.Y. Zhu, Influence of TiO2 addition on the oxidation induration and reduction behavior of Hongge vanadium titanomagnetite pellets with simulated shaft furnace gases, Powder Technol., 326(2018), p. 137. doi: 10.1016/j.powtec.2017.12.050
      [34]
      J. Tang, M.S. Chu, C. Feng, F. Li, Y.T. Tang, and Z.G. Liu, Coupled effect of valuable components in high-chromium vanadium-bearing titanomagnetite during oxidization roasting, ISIJ Int., 56(2016), No. 8, p. 1342. doi: 10.2355/isijinternational.ISIJINT-2016-051

    Catalog


    • /

      返回文章
      返回