Cite this article as: |
Huajing Zong, Nan Kang, Zehao Qin, and Mohamed El Mansori, A review on the multi-scaled structures and mechanical/thermal properties of tool steels fabricated by laser powder bed fusion additive manufacturing, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1048-1071. https://doi.org/10.1007/s12613-023-2731-5 |
康楠 E-mail: nan.kang@ensam.eu
[1] |
S.R. Narasimharaju, W.H. Zeng, T.L. See, et al., A comprehensive review on laser powder bed fusion of steels: Processing, microstructure, defects and control methods, mechanical properties, current challenges and future trends, J. Manuf. Process., 75(2022), p. 375. doi: 10.1016/j.jmapro.2021.12.033
|
[2] |
Y.W. Sun, J.L. Wang, M.L. Li, et al., Thermal and mechanical properties of selective laser melted and heat treated H13 hot work tool steel, Mater. Des., 224(2022), art. No. 111295. doi: 10.1016/j.matdes.2022.111295
|
[3] |
E.A. Jägle, Z.D. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, and D. Raabe, Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing, Materials, 10(2016), No. 1, art. No. 8. doi: 10.3390/ma10010008
|
[4] |
T. DebRoy, H.L. Wei, J.S. Zuback, et al., Additive manufacturing of metallic components–Process, structure and properties, Prog. Mater. Sci., 92(2018), p. 112. doi: 10.1016/j.pmatsci.2017.10.001
|
[5] |
H. Fayazfar, M. Salarian, A. Rogalsky, et al., A critical review of powder-based additive manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties, Mater. Des., 144(2018), p. 98.
|
[6] |
S. Feng, A.M. Kamat, and Y. Pei, Design and fabrication of conformal cooling channels in molds: Review and progress updates, Int. J. Heat Mass Transfer, 171(2021), art. No. 121082. doi: 10.1016/j.ijheatmasstransfer.2021.121082
|
[7] |
P.S. Cook and A.B. Murphy, Simulation of melt pool behaviour during additive manufacturing: Underlying physics and progress, Addit. Manuf., 31(2020), art. No. 100909.
|
[8] |
P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, and E.A. Jägle, Steels in additive manufacturing: A review of their microstructure and properties, Mater. Sci. Eng. A, 772(2020), art. No. 138633. doi: 10.1016/j.msea.2019.138633
|
[9] |
E.B. Fonseca, A.H.G. Gabriel, L.C. Araújo, P.L.L. Santos, K.N. Campo, and E.S.N. Lopes, Assessment of laser power and scan speed influence on microstructural features and consolidation of AISI H13 tool steel processed by additive manufacturing, Addit. Manuf., 34(2020), art. No. 101250.
|
[10] |
J.T. Wang, S.P. Liu, Y.P. Fang, and Z.R. He, A short review on selective laser melting of H13 steel, Int. J. Adv. Manuf. Technol., 108(2020), No. 7, p. 2453.
|
[11] |
Q.Y. Tan, Y. Yin, F. Wang, et al., Rationalization of brittleness and anisotropic mechanical properties of H13 steel fabricated by selective laser melting, Scripta Mater., 214(2022), art. No. 114645. doi: 10.1016/j.scriptamat.2022.114645
|
[12] |
L.L. Guo, L.N. Zhang, J. Andersson, and O. Ojo, Additive manufacturing of 18% nickel maraging steels: Defect, structure and mechanical properties: A review, J. Mater. Sci. Technol., 120(2022), p. 227. doi: 10.1016/j.jmst.2021.10.056
|
[13] |
C.L. Tan, K.S. Zhou, W.Y. Ma, P.P. Zhang, M. Liu, and T.C. Kuang, Microstructural evolution, nanoprecipitation behavior and mechanical properties of selective laser melted high-performance grade 300 maraging steel, Mater. Des., 134(2017), p. 23. doi: 10.1016/j.matdes.2017.08.026
|
[14] |
Y. Yin, Q.Y. Tan, M. Bermingham, N. Mo, J.Q. Zhang, and M.X. Zhang, Laser additive manufacturing of steels, Int. Mater. Rev., 67(2022), No. 5, p. 487. doi: 10.1080/09506608.2021.1983351
|
[15] |
K. Chadha, Y. Tian, K. Nyamuchiwa, J. Spray, and C. Aranas Jr, Austenite transformation during deformation of additively manufactured H13 tool steel, Mater. Today Commun., 33(2022), art. No. 104332. doi: 10.1016/j.mtcomm.2022.104332
|
[16] |
M. Markl and C. Körner, Multiscale modeling of powder bed-based additive manufacturing, Annu. Rev. Mater. Res., 46(2016), p. 93. doi: 10.1146/annurev-matsci-070115-032158
|
[17] |
Z.D. Zhang, Y.Z. Huang, A.R. Kasinathan, et al., 3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity, Opt. Laser Technol., 109(2019), p. 297. doi: 10.1016/j.optlastec.2018.08.012
|
[18] |
J.P.M. Cheloni, E.B. Fonseca, A.H.G. Gabriel, and É.S.N. Lopes, The transient temperature field and microstructural evolution of additively manufactured AISI H13 steel supported by finite element analysis, J. Mater. Res. Technol., 19(2022), p. 4583. doi: 10.1016/j.jmrt.2022.06.143
|
[19] |
M. Bayat, W. Dong, J. Thorborg, A.C. To, and J.H. Hattel, A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf., 47(2021), art. No. 102278.
|
[20] |
B.C. Liu, R. Wildman, C. Tuck, I. Ashcroft, and R. Hague, Investigaztion the effect of particle size distribution on processing parameters optimisation in selective laser melting process, [in] 2011 International Solid Freeform Fabrication Symposium, Austin, 2011.
|
[21] |
J. Tan, W.L.E. Wong, and K. Dalgarno, An overview of powder granulometry on feedstock and part performance in the selective laser melting process, Addit. Manuf., 18(2017), p. 228.
|
[22] |
Y. Liu, J. Zhang, and Z.C. Pang, Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel, Opt. Laser Technol., 98(2018), p. 23. doi: 10.1016/j.optlastec.2017.07.034
|
[23] |
T. Mukherjee, H.L. Wei, A. De, and T. DebRoy, Heat and fluid flow in additive manufacturing—Part I: Modeling of powder bed fusion, Comput. Mater. Sci., 150 (2018), p. 304. doi: 10.1016/j.commatsci.2018.04.022
|
[24] |
T.N. Le and Y.L. Lo, Effects of sulfur concentration and Marangoni convection on melt-pool formation in transition mode of selective laser melting process, Mater. Des., 179(2019), art. No. 107866. doi: 10.1016/j.matdes.2019.107866
|
[25] |
X.F. Xiao, C. Lu, Y.S. Fu, X.J. Ye, and L.J. Song, Progress on Experimental Study of Melt Pool Flow Dynamics in Laser Material Processing, IntechOpen, London, 2021.
|
[26] |
S.A. Khairallah, A.T. Anderson, A.M. Rubenchik, and W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater., 108(2016), p. 36. doi: 10.1016/j.actamat.2016.02.014
|
[27] |
O. Zinovieva, A. Zinoviev, and V. Ploshikhin, Three-dimensional modeling of the microstructure evolution during metal additive manufacturing, Comput. Mater. Sci., 141(2018), p. 207. doi: 10.1016/j.commatsci.2017.09.018
|
[28] |
A.R. Dezfoli, W.S. Hwang, W.C. Huang, and T.W. Tsai, Determination and controlling of grain structure of metals after laser incidence: Theoretical approach, Sci. Rep., 7(2017), art. No. 41527. doi: 10.1038/srep41527
|
[29] |
P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, P. Chalermkarnnon, and P. Rattanadecho, Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process, Case Stud. Therm. Eng., 24(2021), art. No. 100860. doi: 10.1016/j.csite.2021.100860
|
[30] |
J.H. Li, X.L. Zhou, M. Brochu, N. Provatas, and Y.F. Zhao, Solidification microstructure simulation of Ti–6Al–4V in metal additive manufacturing: A review, Addit. Manuf., 31(2020), art. No. 100989.
|
[31] |
Y.P. Lian, S. Lin, W.T. Yan, W.K. Liu, and G.J. Wagner, A parallelized three-dimensional cellular automaton model for grain growth during additive manufacturing, Comput. Mech., 61(2018), No. 5, p. 543. doi: 10.1007/s00466-017-1535-8
|
[32] |
Y. Zhang and J. Zhang, Modeling of solidification microstructure evolution in laser powder bed fusion fabricated 316L stainless steel using combined computational fluid dynamics and cellular automata, Addit. Manuf., 28(2019), p. 750.
|
[33] |
M.A. Kottman, Additive Manufacturing of Maraging 250 Steels for the Rejuvenation and Repurposing of Die Casting Tooling [Dissertation], Case Western Reserve University, Cleveland , 2015.
|
[34] |
P. Stoll, A. Spierings, K. Wegener, S. Polster, and M. Gebauer, SLM processing of 14Ni (200 grade) maraging steel, [in] Proceedings of the 3rd Fraunhofer Direct Digital Manufacturing Conference, Berlin, 2016, p. 6.
|
[35] |
P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, and D. Raabe, Massive nanoprecipitation in an Fe–19Ni–xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition, Acta Mater., 129(2017), p. 52. doi: 10.1016/j.actamat.2017.02.069
|
[36] |
Z.H. Liu, D.Q. Zhang, C.K. Chua, and K.F. Leong, Crystal structure analysis of M2 high speed steel parts produced by selective laser melting, Mater. Charact., 84(2013), p. 72. doi: 10.1016/j.matchar.2013.07.010
|
[37] |
J. Saewe, C. Gayer, A. Vogelpoth, and J.H. Schleifenbaum, Feasability investigation for laser powder bed fusion of high-speed steel AISI M50 with base preheating system, BHM Berg Hüttenmänn. Monatsh., 164(2019), No. 3, p. 101.
|
[38] |
R. Casati, M. Coduri, N. Lecis, C. Andrianopoli, and M. Vedani, Microstructure and mechanical behavior of hot-work tool steels processed by selective laser melting, Mater. Charact., 137(2018), p. 50. doi: 10.1016/j.matchar.2018.01.015
|
[39] |
T. Pinomaa, I. Yashchuk, M. Lindroos, T. Andersson, N. Provatas, and A. Laukkanen, Process-structure-properties-performance modeling for selective laser melting, Metals, 9(2019), No. 11, art. No. 1138. doi: 10.3390/met9111138
|
[40] |
J.J. Yan, D.L. Zheng, H.X. Li, et al., Selective laser melting of H13: Microstructure and residual stress, J. Mater. Sci., 52(2017), No. 20, p. 12476. doi: 10.1007/s10853-017-1380-3
|
[41] |
M. Narvan, K.S. Al-Rubaie, and M. Elbestawi, Process–structure–property relationships of AISI H13 tool steel processed with selective laser melting, Materials, 12(2019), No. 14, art. No. 2284. doi: 10.3390/ma12142284
|
[42] |
R.A. Savrai, D.V. Toporova, and T.M. Bykova, Improving the quality of AISI H13 tool steel produced by selective laser melting, Opt. Laser Technol., 152(2022), art. No. 108128. doi: 10.1016/j.optlastec.2022.108128
|
[43] |
J. Krell, A. Röttger, K. Geenen, and W. Theisen, General investigations on processing tool steel X40CrMoV5-1 with selective laser melting. J. Mater. Process. Technol. , 255(2018), p. 679. doi: 10.1016/j.jmatprotec.2018.01.012
|
[44] |
R. Mertens, B. Vrancken, N. Holmstock, Y. Kinds, J.P. Kruth, and J. Van Humbeeck, Influence of powder bed preheating on microstructure and mechanical properties of H13 tool steel SLM parts, Phys. Procedia, 83(2016), p. 882. doi: 10.1016/j.phpro.2016.08.092
|
[45] |
F. Deirmina, N. Peghini, B. AlMangour, D. Grzesiak, and M. Pellizzari, Heat treatment and properties of a hot work tool steel fabricated by additive manufacturing, Mater. Sci. Eng. A, 753(2019), p. 109. doi: 10.1016/j.msea.2019.03.027
|
[46] |
F. Lei, T. Wen, F.P. Yang, et al., Microstructures and mechanical properties of H13 tool steel fabricated by selective laser melting, Materials, 15(2022), No. 7, art. No. 2686. doi: 10.3390/ma15072686
|
[47] |
C.J. Chen, K. Yan, L.L. Qin, et al., Effect of heat treatment on microstructure and mechanical properties of laser additively Manufactured AISI H13 tool steel, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5577. doi: 10.1007/s11665-017-2992-0
|
[48] |
C. Liu, Z.B. Zhao, D.O. Northwood, and Y.X. Liu, A new empirical formula for the calculation of MS temperatures in pure iron and super-low carbon alloy steels, J. Mater. Process. Technol., 113(2001), No. 1-3, p. 556. doi: 10.1016/S0924-0136(01)00625-2
|
[49] |
M.J. Holzweissig, A. Taube, F. Brenne, M. Schaper, and T. Niendorf, Microstructural characterization and mechanical performance of hot work tool steel processed by selective laser melting, Metall. Mater. Trans. B, 46(2015), No. 2, p. 545. doi: 10.1007/s11663-014-0267-9
|
[50] |
N. Panahi, M. Åsberg, C. Oikonomou, and P. Krakhmalev, Effect of preheating temperature on the porosity and microstructure of martensitic hot work tool steel manufactured with L-PBF, Procedia CIRP, 111(2022), p. 166. doi: 10.1016/j.procir.2022.08.142
|
[51] |
B. Ren, D.H. Lu, R. Zhou, Z.H. Li, and J.R. Guan, Preparation and mechanical properties of selective laser melted H13 steel, J. Mater. Res., 34(2019), No. 8, p. 1415. doi: 10.1557/jmr.2019.10
|
[52] |
G. Huang, K.W. Wei, and X.Y. Zeng, Microstructure and mechanical properties of H13 tool steel fabricated by high power laser powder bed fusion, Mater. Sci. Eng. A, 858(2022), art. No. 144154. doi: 10.1016/j.msea.2022.144154
|
[53] |
Q.Y. Tan, H.W. Chang, Y. Yin, et al., Simultaneous enhancements of strength and ductility of a selective laser melted H13 steel through inoculation treatment, Scripta Mater., 219(2022), art. No. 114874. doi: 10.1016/j.scriptamat.2022.114874
|
[54] |
Y.M. Wang, T. Voisin, J.T. McKeown, et al., Additively manufactured hierarchical stainless steels with high strength and ductility, Nat. Mater., 17(2018), No. 1, p. 63. doi: 10.1038/nmat5021
|
[55] |
K. Prashanth and J. Eckert, Formation of metastable cellular microstructures in selective laser melted alloys, J. Alloys Compd., 707(2016), p. 27.
|
[56] |
J. Lee, J. Choe, J. Park, et al., Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions, Mater. Charact., 155(2019), art. No. 109817. doi: 10.1016/j.matchar.2019.109817
|
[57] |
T. Wen, F.P. Yang, J.Y. Wang, H.L. Yang, J.W. Fu, and S.X. Ji, Ultrastrong and ductile synergy of additively manufactured H13 steel by tuning cellular structure and nano-carbides through tempering treatment, J. Mater. Res. Technol., 22(2023), p. 157. doi: 10.1016/j.jmrt.2022.11.105
|
[58] |
M. Wang, W. Li, Y. Wu, et al., High-temperature properties and microstructural stability of the AISI H13 hot-work tool steel processed by selective laser melting, Metall. Mater. Trans. B, 50(2019), No. 1, p. 531. doi: 10.1007/s11663-018-1442-1
|
[59] |
L.X. Han, Y. Wang, S. Liu, et al., Effect of cryogenic treatment on the microstructure and mechanical properties of selected laser melted H13 steel, J. Mater. Res. Technol., 21(2022), p. 5056. doi: 10.1016/j.jmrt.2022.11.068
|
[60] |
A.F. de Souza, K.S. Al-Rubaie, S. Marques, B. Zluhan, and E.C. Santos, Effect of laser speed, layer thickness, and part position on the mechanical properties of maraging 300 parts manufactured by selective laser melting, Mater. Sci. Eng. A, 767(2019), art. No. 138425. doi: 10.1016/j.msea.2019.138425
|
[61] |
A. Suzuki, R. Nishida, N. Takata, M. Kobashi, and M. Kato, Design of laser parameters for selectively laser melted maraging steel based on deposited energy density, Addit. Manuf., 28(2019), p. 160.
|
[62] |
J. Song, Q. Tang, Q.X. Feng, et al., Effect of remelting processes on the microstructure and mechanical behaviours of 18Ni-300 maraging steel manufactured by selective laser melting, Mater. Charact., 184(2022), art. No. 111648. doi: 10.1016/j.matchar.2021.111648
|
[63] |
J.K. Ong, Q. Tan, A. Silva, et al., Effect of process parameters and build orientations on the mechanical properties of maraging steel (18Ni-300) parts printed by selective laser melting, Mater. Today Proc., 70(2022), p. 438. doi: 10.1016/j.matpr.2022.09.362
|
[64] |
N. Takata, R. Nishida, A. Suzuki, M. Kobashi, and M. Kato, Crystallographic features of microstructure in maraging steel fabricated by selective laser melting, Metals, 8(2018), No. 6, art. No. 440. doi: 10.3390/met8060440
|
[65] |
J. Mutua, S. Nakata, T. Onda, and Z.C. Chen, Optimization of selective laser melting parameters and influence of post heat treatment on microstructure and mechanical properties of maraging steel, Mater. Des., 139(2018), p. 486.
|
[66] |
J. Suryawanshi, K.G. Prashanth, and U. Ramamurty, Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting, J. Alloys Compd., 725(2017), p. 355. doi: 10.1016/j.jallcom.2017.07.177
|
[67] |
F. Conde, J. Escobar, J. Oliveira, A. Jardini, W.B. Filho, and J. Avila, Austenite reversion kinetics and stability during tempering of an additively manufactured maraging 300 steel, Addit. Manuf., 29(2019), art. No. 100804.
|
[68] |
J. Song, Q, Tang, H. Chen, et al. , Laser powder bed fusion of high-strength maraging steel with concurrently enhanced strength and ductility after heat treatments, Mater. Sci. Eng. A, 854(2022), art. No. 143818. doi: 10.1016/j.msea.2022.143818
|
[69] |
Z. Mao, X. Lu, H. Yang, X. Niu, L. Zhang, and X. Xie, Processing optimization, microstructure, mechanical properties and nanoprecipitation behavior of 18Ni300 maraging steel in selective laser melting, Mater. Sci. Eng. A, 830(2022), art. No. 142334. doi: 10.1016/j.msea.2021.142334
|
[70] |
Y.C. Bai, Y.Q. Yang, D. Wang, and M.K. Zhang, Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting, Mater. Sci. Eng. A, 703(2017), p. 116. doi: 10.1016/j.msea.2017.06.033
|
[71] |
S. Bodziak, K.S. Al-Rubaie, L.D. Valentina, et al., Precipitation in 300 grade maraging steel built by selective laser melting: Aging at 510°C for 2 h, Mater. Charact., 151(2019), p. 73. doi: 10.1016/j.matchar.2019.02.033
|
[72] |
S. Yin, C.Y. Chen, X.C. Yan, et al., The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel, Addit. Manuf., 22(2018), p. 592.
|
[73] |
C.L. Tan, K.S. Zhou, M. Kuang, W.Y. Ma, and T.C. Kuang, Microstructural characterization and properties of selective laser melted maraging steel with different build directions, Sci. Technol. Adv. Mater., 19(2018), No. 1, p. 746. doi: 10.1080/14686996.2018.1527645
|
[74] |
E.A. Jägle, P.P. Choi, J. Van Humbeeck, and D. Raabe, Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting, J. Mater. Res., 29(2014), No. 17, p. 2072. doi: 10.1557/jmr.2014.204
|
[75] |
M. Katancik, S. Mirzababaei, M. Ghayoor, and S. Pasebani, Selective laser melting and tempering of H13 tool steel for rapid tooling applications, J. Alloys Compd., 849(2020), art. No. 156319. doi: 10.1016/j.jallcom.2020.156319
|
[76] |
M.W. Yuan, Y. Cao, S. Karamchedu, et al., Characteristics of a modified H13 hot-work tool steel fabricated by means of laser beam powder bed fusion, Mater. Sci. Eng. A, 831(2022), art. No. 142322. doi: 10.1016/j.msea.2021.142322
|
[77] |
M. Åsberg, G. Fredriksson, S. Hatami, W. Fredriksson, and P. Krakhmalev, Influence of post treatment on microstructure, porosity and mechanical properties of additive manufactured H13 tool steel, Mater. Sci. Eng. A, 742(2019), p. 584. doi: 10.1016/j.msea.2018.08.046
|
[78] |
T. Hermann Becker and D. Dimitrov, The achievable mechanical properties of SLM produced Maraging steel 300 components, Rapid Prototyp. J., 22(2016), No. 3, p. 487. doi: 10.1108/RPJ-08-2014-0096
|
[79] |
Z.J. Zhao, C.F. Dong, D.C. Kong, et al., Influence of pore defects on the mechanical property and corrosion behavior of SLM 18Ni300 maraging steel, Mater. Charact., 182(2021), art. No. 111514. doi: 10.1016/j.matchar.2021.111514
|
[80] |
W. Wu, X. Wang, Q. Wang, et al., Microstructure and mechanical properties of maraging 18Ni-300 steel obtained by powder bed based selective laser melting process, Rapid Prototyping J., 26(2020), No. 8, p. 1379. doi: 10.1108/RPJ-08-2018-0189
|
[81] |
K. Kempen, E. Yasa, L. Thijs, J.P. Kruth, and J. Van Humbeeck, Microstructure and mechanical properties of selective laser melted 18Ni-300 steel, Phys. Procedia, 12(2011), p. 255. doi: 10.1016/j.phpro.2011.03.033
|
[82] |
R. Casati, J. Lemke, A. Tuissi, and M. Vedani, Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting, Metals, 6(2016), No. 9, p. 218. doi: 10.3390/met6090218
|
[83] |
B. Mooney, K.I. Kourousis, and R. Raghavendra, Plastic anisotropy of additively manufactured maraging steel: Influence of the build orientation and heat treatments, Addit. Manuf., 25(2019), p. 19.
|
[84] |
Y.J. Wang, Z. Jia, J.J. Ji, B.L. Wei, Y.B. Heng, and D.X. Liu, Determining the wear behavior of H13 steel die during the extrusion process of pure nickel, Eng. Fail. Anal., 134(2022), art. No. 106053. doi: 10.1016/j.engfailanal.2022.106053
|
[85] |
S.Q. Wang, M.X. Wei, F. Wang, and Y.T. Zhao, Transition of elevated-temperature wear mechanisms and the oxidative delamination wear in hot-working die steels, Tribol. Int., 43(2010), No. 3, p. 577. doi: 10.1016/j.triboint.2009.09.006
|
[86] |
A. Bahrami, S.H.M. Anijdan, M.A. Golozar, M. Shamanian, and N. Varahram, Effects of conventional heat treatment on wear resistance of AISI H13 tool steel, Wear, 258(2005), No. 5-6, p. 846. doi: 10.1016/j.wear.2004.09.008
|
[87] |
S. Li, X.C. Wu, S.H. Chen, and J.W. Li, Wear resistance of H13 and a new hot-work die steel at high temperature, J. Mater. Eng. Perform., 25(2016), No. 7, p. 2993. doi: 10.1007/s11665-016-2124-2
|
[88] |
E. Guenther, M. Kahlert, M. Vollmer, T. Niendorf, and C. Greiner, Tribological performance of additively manufactured AISI H13 steel in different surface conditions, Materials, 14(2021), No. 4, art. No. 928. doi: 10.3390/ma14040928
|
[89] |
Z.F. Zhang, L.C. Zhang, and Y.W. Mai, Particle effects on friction and wear of aluminium matrix composites, J. Mater. Sci., 30(1995), No. 23, p. 5999. doi: 10.1007/BF01151519
|
[90] |
D.F.S. Ferreira, J.S. Vieira, S.P. Rodrigues, G. Miranda, F.J. Oliveira, and J.M. Oliveira, Dry sliding wear and mechanical behaviour of selective laser melting processed 18Ni300 and H13 steels for moulds, Wear, 488-489(2022), art. No. 204179. doi: 10.1016/j.wear.2021.204179
|
[91] |
M. Godec, B. Podgornik, A. Kocijan, Č. Donik, and D.A.S. Balantič, Use of plasma nitriding to improve the wear and corrosion resistance of 18Ni-300 maraging steel manufactured by selective laser melting, Sci. Rep., 11(2021), No. 1, art. No. 3277. doi: 10.1038/s41598-021-82572-y
|
[92] |
P. Tonolini, L. Marchini, L. Montesano, M. Gelfi, and A. Pola, Wear and corrosion behavior of 18Ni-300 maraging steel produced by laser-based powder bed fusion and conventional route, Procedia Struct. Integr., 42(2022), p. 821. doi: 10.1016/j.prostr.2022.12.104
|
[93] |
B. Podgornik, M. Šinko, and M. Godec, Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment, Addit. Manuf., 46(2021), art. No. 102123.
|
[94] |
K. Sun, W.X. Peng, B.H. Wei, L.L. Yang, and L. Fang, Friction and wear characteristics of 18Ni(300) maraging steel under high-speed dry sliding conditions, Materials, 13(2020), No. 7, art. No. 1485. doi: 10.3390/ma13071485
|
[95] |
K.C. Bae, D. Kim, Y.H. Kim, et al., Effect of heat treatment, building direction, and sliding velocity on wear behavior of selectively laser-melted maraging 18Ni-300 steel against bearing steel, Wear, 482-483(2021), art. No. 203962. doi: 10.1016/j.wear.2021.203962
|
[96] |
J. Džugan, K. Halmešová, M. Ackermann, M. Koukolíková, and Z.Trojanová, Thermo-physical properties investigation in relation to deposition orientation for SLM deposited H13 steel, Thermochim. Acta, 683(2020), art. No. 178479. doi: 10.1016/j.tca.2019.178479
|
[97] |
Y.C. Bai, C.L. Zhao, J.Y. Zhang, and H. Wang, Abnormal thermal expansion behaviour and phase transition of laser powder bed fusion maraging steel with different thermal histories during continuous heating, Addit. Manuf., 53(2022), art. No. 102712.
|
[98] |
A.E.W. Jarfors, T. Matsushita, D. Siafakas, and R. Stolt, On the nature of the anisotropy of maraging steel (1.2709) in additive manufacturing through powder bed laser-based fusion processing, Mater. Des., 204(2021), art. No. 109608. doi: 10.1016/j.matdes.2021.109608
|
[99] |
Y.C. Bai, Y.J. Lee, C.J. Li, and H. Wang, Densification behavior and influence of building direction on high anisotropy in selective laser melting of high-strength 18Ni–Co–Mo–Ti maraging steel, Metall. Mater. Trans. A, 51(2020), No. 11, p. 5861. doi: 10.1007/s11661-020-05978-9
|