留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(14)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  571
  • HTML全文浏览量:  219
  • PDF下载量:  51
  • 被引次数: 0
Yuheng Zhang, Zixin Li, Yunwei Gui, Huadong Fu, and Jianxin Xie, Effect of Ti and Ta content on the oxidation resistance of Co–Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 351-361. https://doi.org/10.1007/s12613-023-2733-3
Cite this article as:
Yuheng Zhang, Zixin Li, Yunwei Gui, Huadong Fu, and Jianxin Xie, Effect of Ti and Ta content on the oxidation resistance of Co–Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 351-361. https://doi.org/10.1007/s12613-023-2733-3
引用本文 PDF XML SpringerLink
研究论文

Ti、Ta元素含量对Co–Ni基高温合金氧化性能的影响


  • 通讯作者:

    付华栋    E-mail: hdfu@ustb.edu.cn

文章亮点

  • (1) Ti或Ta元素含量过高时都会对合金抗氧化性能产生不利影响
  • (2) 报道了(W, Mo)O3在高Al含量Co–Ni基铸造高温合金氧化过程中的挥发
  • (3) 合金氧化层的主要结构从外到内依次是尖晶石,Cr2O3和Al2O3
  • Co–Ni基高温合金具有更高的承温能力,更优异的抗热腐蚀性能与抗热疲劳性能,有望作为航空发动机和燃气轮机热端部件的关键高温结构材料。在前期的工作中,我们阐明了Ti、Ta元素对合金高温力学性能的贡献,但元素间复杂的交互作用同样会显著影响合金抗氧化性能。为此,本文设计并制备了不同Ti、Ta含量的Co–35Ni–10Al–2W–5Cr–2Mo–1Nb–xTi–(5−x)Ta合金(x = 1,2,3,4),研究了合金在800–1000°C的抗氧化性能。结果表明,合金氧化层的主要结构从外到内依次是尖晶石,Cr2O3和Al2O3。由Ta,W和Mo形成的氧化物在Cr2O3层下方产生。Ti、Ta元素的交互作用使3Ti2Ta合金的抗氧化性能最好,当Ti或Ta元素含量过高时都会对合金抗氧化性能产生不利影响。本研究首次发现并报道了W、Mo氧化物在高Al含量的Co–Ni基铸造高温合金氧化过程中的挥发,解释了氧化层内空洞的形成机理。研究结果为合金元素的交互作用对合金抗氧化性能的影响奠定了基础。
  • Research Article

    Effect of Ti and Ta content on the oxidation resistance of Co–Ni-based superalloys

    + Author Affiliations
    • Co–Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance. Therefore, these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components. Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys. However, the intricate interaction among elements considerably affects the oxidation resistance of alloys. In this paper, Co–35Ni–10Al–2W–5Cr–2Mo–1Nb–xTi–(5−x)Ta alloys (x = 1, 2, 3, 4) with varying Ti and Ta contents were designed and compounded, and their oxidation resistance was investigated at the temperature range from 800 to 1000°C. After oxidation at three test conditions, namely, 800°C for 200 h, 900°C for 200 h, and 1000°C for 50 h, the main structure of the oxide layer of the alloy consisted of spinel, Cr2O3, and Al2O3 from outside to inside. Oxides consisting of Ta, W, and Mo formed below the Cr2O3 layer. The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy. Conversely, an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys. This study reports the volatilization of W and Mo oxides during the oxidation process of Co–Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer. The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.
    • loading
    • [1]
      K. Shinagawa, T. Omori, J. Sato, et al., Phase equilibria and microstructure on γ′ phase in Co–Ni–Al–W system, Mater. Trans., 49(2008), No. 6, p. 1474. doi: 10.2320/matertrans.MER2008073
      [2]
      E.A. Lass, Application of computational thermodynamics to the design of a Co–Ni-based γ′-strengthened superalloy, Metall. Mater. Trans. A, 48(2017), No. 5, p. 2443. doi: 10.1007/s11661-017-4040-y
      [3]
      S.P. Murray, A. Cervellon, J. Cormier, and T.M. Pollock, Low cycle fatigue of a single crystal CoNi-base superalloy, Mater. Sci. Eng. A, 827(2021), art. No. 142007. doi: 10.1016/j.msea.2021.142007
      [4]
      C.A. Stewart, S.P. Murray, A. Suzuki, T.M. Pollock, and C.G. Levi, Accelerated discovery of oxidation resistant CoNi-base γ/γ′ alloys with high L12 solvus and low density, Mater. Des., 189(2020), art. No. 108445. doi: 10.1016/j.matdes.2019.108445
      [5]
      S. Meher, L.J. Carroll, T.M. Pollock, and M.C. Carroll, Solute partitioning in multi-component γ/γ′ Co–Ni-base superalloys with near-zero lattice misfit, Scripta Mater., 113(2016), p. 185. doi: 10.1016/j.scriptamat.2015.10.039
      [6]
      Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spiecker, Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys, Acta Mater., 113(2016), p. 335. doi: 10.1016/j.actamat.2016.03.077
      [7]
      M.Z. Alam, D. Chatterjee, B. Venkataraman, V.K. Varma, and D.K. Das, Effect of cyclic oxidation on the tensile behavior of directionally solidified CM-247LC Ni-based superalloy at 870°C, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6211. doi: 10.1016/j.msea.2010.06.046
      [8]
      M.Q. Wang, J.H. Du, and Q. Deng, The influence of oxygen partial pressure on the crack propagation of superalloy under fatigue-creep-environment interaction, Mater. Sci. Eng. A, 812(2021), art. No. 140903. doi: 10.1016/j.msea.2021.140903
      [9]
      S.A.J. Forsik, A.O. Polar Rosas, T. Wang, et al., High-temperature oxidation behavior of a novel co-base superalloy, Metall. Mater. Trans. A, 49(2018), No. 9, p. 4058. doi: 10.1007/s11661-018-4736-7
      [10]
      F.B. Ismail, V.A. Vorontsov, T.C. Lindley, M.C. Hardy, D. Dye, and B.A. Shollock, Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloys, Corros. Sci., 116(2017), p. 44. doi: 10.1016/j.corsci.2016.12.009
      [11]
      L.J. Li, L. Wang, Z.D. Liang, J.Y. He, and M. Song, Unveiling different oxide scales in a compositionally complex polycrystalline CoNi-base superalloy, J. Alloys Compd., 947(2023), art. No. 169558. doi: 10.1016/j.jallcom.2023.169558
      [12]
      W.D. Li, L.F. Li, S. Antonov, F. Lu, and Q. Feng, Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys, J. Alloys Compd., 826(2020), art. No. 154182. doi: 10.1016/j.jallcom.2020.154182
      [13]
      C.A. Stewart, A. Suzuki, R.K. Rhein, T.M. Pollock, and C.G. Levi, Oxidation behavior across composition space relevant to co-based γ/γ′ alloys, Metall. Mater. Trans. A, 50(2019), No. 11, p. 5445. doi: 10.1007/s11661-019-05413-8
      [14]
      B. Ohl and D.C. Dunand, Effects of Ni and Cr additions on γ + γ′ microstructure and mechanical properties of W-free Co–Al–V–Nb–Ta-based superalloys, Mater. Sci. Eng. A, 849(2022), art. No. 143401. doi: 10.1016/j.msea.2022.143401
      [15]
      B.H. Yu, Y.P. Li, Y. Nie, and H. Mei, High temperature oxidation behavior of a novel cobalt–nickel-base superalloy, J. Alloys Compd., 765(2018), p. 1148. doi: 10.1016/j.jallcom.2018.06.275
      [16]
      Y. Zhang, H.D. Fu, F.J. Zhou, and J.X. Xie, Revealing the effect of Al content on the oxidation of γ'-strengthened cobalt-based superalloys, Corros. Sci., 198(2022), art. No. 110122. doi: 10.1016/j.corsci.2022.110122
      [17]
      D. Migas, G. Moskal, and T. Maciąg, Thermal analysis of W-free Co–(Ni)–Al–Mo–Nb superalloys, J. Therm. Anal. Calorim., 142(2020), No. 1, p. 149. doi: 10.1007/s10973-020-09375-7
      [18]
      M. Weiser and S. Virtanen, Influence of W content on the oxidation behaviour of ternary γ′-strengthened Co-based model alloys between 800 and 900°C, Oxid. Met., 92(2019), No. 5, p. 541.
      [19]
      Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, and H.Y. Yu, Effect of Ti addition on high-temperature oxidation behavior of Co–Ni-based superalloy, J. Iron Steel Res. Int., 27(2020), No. 10, p. 1179. doi: 10.1007/s42243-020-00379-z
      [20]
      A. Roy, M.P. Singh, S.M. Das, S.K. Makineni, and K. Chattopadhyay, Role of Ti on phase evolution, oxidation and nitridation of Co–30Ni–10Al–8Cr–5Mo–2Nb–(0, 2 & 4) Ti cobalt base superalloys at elevated temperature, Metall. Mater. Trans. A, 52(2021), No. 11, p. 5004. doi: 10.1007/s11661-021-06445-9
      [21]
      F.F. Han, J.X. Chang, H. Li, L.H. Lou, and J. Zhang, Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy, J. Alloys Compd., 619(2015), p. 102. doi: 10.1016/j.jallcom.2014.08.259
      [22]
      W.L. Ren, F.F. Ouyang, B. Ding, et al., The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900°C, J. Alloys Compd., 724(2017), p. 565. doi: 10.1016/j.jallcom.2017.07.066
      [23]
      Y.H. Zhang, S.Q. Yuan, H.D. Fu, F.J. Zhou, and J.X. Xie, Effects of Ta and Ti content on microstructure and properties of multicomponent Co–Ni-based superalloys, Mater. Sci. Eng. A, 855(2022), art. No. 143829. doi: 10.1016/j.msea.2022.143829
      [24]
      N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
      [25]
      C.Y. Duan, P.S. Liu, and H.B. Qing, High temperature oxidation performance investigation on the activation energy of a Co-base superalloy oxidized in air, Mater. Lett., 283(2021), art. No. 128792. doi: 10.1016/j.matlet.2020.128792
      [26]
      N.C. Billingham, Materials science and technology: A comprehensive treatment: Corrosion and environmental degradation, Volumes I+II, [in] Materials Science and Technology : A Comprehensive Treatment : Corrosion and Environmental Degradation , Volumes I+II, R.W. Cahn, P. Haasen, and E.J. Krame, eds., Weinheim, New Jersey, 2008, p. 469.
      [27]
      A. Sato, Y.L. Chiu, and R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Mater., 59(2011), No. 1, p. 225. doi: 10.1016/j.actamat.2010.09.027
      [28]
      I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer, Berlin, 1977, p. 15.
      [29]
      P.K. Ray, M. Akinc, and M.J. Kramer, Formation of multilayered scale during the oxidation of NiAl–Mo alloy, Appl. Surf. Sci., 301(2014), p. 107. doi: 10.1016/j.apsusc.2014.01.148
      [30]
      L. Qin, P. Ren, Y.L. Yi, et al., Effect of Al2O3 content on the high-temperature oxidation behaviour of CoCrAlYTa coatings produced by laser-induction hybrid cladding, Corros. Sci., 209(2022), art. No. 110739. doi: 10.1016/j.corsci.2022.110739
      [31]
      Y. Hirata, T. Shimonosono, S. Sameshima, and H. Tominaga, Sintering of alumina powder compacts and their compressive mechanical properties, Ceram. Int., 41(2015), No. 9, p. 11449. doi: 10.1016/j.ceramint.2015.05.109

    Catalog


    • /

      返回文章
      返回