Cite this article as: |
Yuheng Zhang, Zixin Li, Yunwei Gui, Huadong Fu, and Jianxin Xie, Effect of Ti and Ta content on the oxidation resistance of Co–Ni-based superalloys, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 351-361. https://doi.org/10.1007/s12613-023-2733-3 |
付华栋 E-mail: hdfu@ustb.edu.cn
[1] |
K. Shinagawa, T. Omori, J. Sato, et al., Phase equilibria and microstructure on γ′ phase in Co–Ni–Al–W system, Mater. Trans., 49(2008), No. 6, p. 1474. doi: 10.2320/matertrans.MER2008073
|
[2] |
E.A. Lass, Application of computational thermodynamics to the design of a Co–Ni-based γ′-strengthened superalloy, Metall. Mater. Trans. A, 48(2017), No. 5, p. 2443. doi: 10.1007/s11661-017-4040-y
|
[3] |
S.P. Murray, A. Cervellon, J. Cormier, and T.M. Pollock, Low cycle fatigue of a single crystal CoNi-base superalloy, Mater. Sci. Eng. A, 827(2021), art. No. 142007. doi: 10.1016/j.msea.2021.142007
|
[4] |
C.A. Stewart, S.P. Murray, A. Suzuki, T.M. Pollock, and C.G. Levi, Accelerated discovery of oxidation resistant CoNi-base γ/γ′ alloys with high L12 solvus and low density, Mater. Des., 189(2020), art. No. 108445. doi: 10.1016/j.matdes.2019.108445
|
[5] |
S. Meher, L.J. Carroll, T.M. Pollock, and M.C. Carroll, Solute partitioning in multi-component γ/γ′ Co–Ni-base superalloys with near-zero lattice misfit, Scripta Mater., 113(2016), p. 185. doi: 10.1016/j.scriptamat.2015.10.039
|
[6] |
Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spiecker, Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys, Acta Mater., 113(2016), p. 335. doi: 10.1016/j.actamat.2016.03.077
|
[7] |
M.Z. Alam, D. Chatterjee, B. Venkataraman, V.K. Varma, and D.K. Das, Effect of cyclic oxidation on the tensile behavior of directionally solidified CM-247LC Ni-based superalloy at 870°C, Mater. Sci. Eng. A, 527(2010), No. 23, p. 6211. doi: 10.1016/j.msea.2010.06.046
|
[8] |
M.Q. Wang, J.H. Du, and Q. Deng, The influence of oxygen partial pressure on the crack propagation of superalloy under fatigue-creep-environment interaction, Mater. Sci. Eng. A, 812(2021), art. No. 140903. doi: 10.1016/j.msea.2021.140903
|
[9] |
S.A.J. Forsik, A.O. Polar Rosas, T. Wang, et al., High-temperature oxidation behavior of a novel co-base superalloy, Metall. Mater. Trans. A, 49(2018), No. 9, p. 4058. doi: 10.1007/s11661-018-4736-7
|
[10] |
F.B. Ismail, V.A. Vorontsov, T.C. Lindley, M.C. Hardy, D. Dye, and B.A. Shollock, Alloying effects on oxidation mechanisms in polycrystalline Co–Ni base superalloys, Corros. Sci., 116(2017), p. 44. doi: 10.1016/j.corsci.2016.12.009
|
[11] |
L.J. Li, L. Wang, Z.D. Liang, J.Y. He, and M. Song, Unveiling different oxide scales in a compositionally complex polycrystalline CoNi-base superalloy, J. Alloys Compd., 947(2023), art. No. 169558. doi: 10.1016/j.jallcom.2023.169558
|
[12] |
W.D. Li, L.F. Li, S. Antonov, F. Lu, and Q. Feng, Effects of Cr and Al/W ratio on the microstructural stability, oxidation property and γ′ phase nano-hardness of multi-component Co–Ni-base superalloys, J. Alloys Compd., 826(2020), art. No. 154182. doi: 10.1016/j.jallcom.2020.154182
|
[13] |
C.A. Stewart, A. Suzuki, R.K. Rhein, T.M. Pollock, and C.G. Levi, Oxidation behavior across composition space relevant to co-based γ/γ′ alloys, Metall. Mater. Trans. A, 50(2019), No. 11, p. 5445. doi: 10.1007/s11661-019-05413-8
|
[14] |
B. Ohl and D.C. Dunand, Effects of Ni and Cr additions on γ + γ′ microstructure and mechanical properties of W-free Co–Al–V–Nb–Ta-based superalloys, Mater. Sci. Eng. A, 849(2022), art. No. 143401. doi: 10.1016/j.msea.2022.143401
|
[15] |
B.H. Yu, Y.P. Li, Y. Nie, and H. Mei, High temperature oxidation behavior of a novel cobalt–nickel-base superalloy, J. Alloys Compd., 765(2018), p. 1148. doi: 10.1016/j.jallcom.2018.06.275
|
[16] |
Y. Zhang, H.D. Fu, F.J. Zhou, and J.X. Xie, Revealing the effect of Al content on the oxidation of γ'-strengthened cobalt-based superalloys, Corros. Sci., 198(2022), art. No. 110122. doi: 10.1016/j.corsci.2022.110122
|
[17] |
D. Migas, G. Moskal, and T. Maciąg, Thermal analysis of W-free Co–(Ni)–Al–Mo–Nb superalloys, J. Therm. Anal. Calorim., 142(2020), No. 1, p. 149. doi: 10.1007/s10973-020-09375-7
|
[18] |
M. Weiser and S. Virtanen, Influence of W content on the oxidation behaviour of ternary γ′-strengthened Co-based model alloys between 800 and 900°C, Oxid. Met., 92(2019), No. 5, p. 541.
|
[19] |
Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, and H.Y. Yu, Effect of Ti addition on high-temperature oxidation behavior of Co–Ni-based superalloy, J. Iron Steel Res. Int., 27(2020), No. 10, p. 1179. doi: 10.1007/s42243-020-00379-z
|
[20] |
A. Roy, M.P. Singh, S.M. Das, S.K. Makineni, and K. Chattopadhyay, Role of Ti on phase evolution, oxidation and nitridation of Co–30Ni–10Al–8Cr–5Mo–2Nb–(0, 2 & 4) Ti cobalt base superalloys at elevated temperature, Metall. Mater. Trans. A, 52(2021), No. 11, p. 5004. doi: 10.1007/s11661-021-06445-9
|
[21] |
F.F. Han, J.X. Chang, H. Li, L.H. Lou, and J. Zhang, Influence of Ta content on hot corrosion behaviour of a directionally solidified nickel base superalloy, J. Alloys Compd., 619(2015), p. 102. doi: 10.1016/j.jallcom.2014.08.259
|
[22] |
W.L. Ren, F.F. Ouyang, B. Ding, et al., The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850–900°C, J. Alloys Compd., 724(2017), p. 565. doi: 10.1016/j.jallcom.2017.07.066
|
[23] |
Y.H. Zhang, S.Q. Yuan, H.D. Fu, F.J. Zhou, and J.X. Xie, Effects of Ta and Ti content on microstructure and properties of multicomponent Co–Ni-based superalloys, Mater. Sci. Eng. A, 855(2022), art. No. 143829. doi: 10.1016/j.msea.2022.143829
|
[24] |
N. Birks, G.H. Meier, and F.S. Pettit, Introduction to the High Temperature Oxidation of Metals, 2nd ed., Cambridge University Press, Cambridge, 2006.
|
[25] |
C.Y. Duan, P.S. Liu, and H.B. Qing, High temperature oxidation performance investigation on the activation energy of a Co-base superalloy oxidized in air, Mater. Lett., 283(2021), art. No. 128792. doi: 10.1016/j.matlet.2020.128792
|
[26] |
N.C. Billingham, Materials science and technology: A comprehensive treatment: Corrosion and environmental degradation, Volumes I+II, [in] Materials Science and Technology : A Comprehensive Treatment : Corrosion and Environmental Degradation , Volumes I+II, R.W. Cahn, P. Haasen, and E.J. Krame, eds., Weinheim, New Jersey, 2008, p. 469.
|
[27] |
A. Sato, Y.L. Chiu, and R.C. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Mater., 59(2011), No. 1, p. 225. doi: 10.1016/j.actamat.2010.09.027
|
[28] |
I. Barin, O. Knacke, and O. Kubaschewski, Thermochemical Properties of Inorganic Substances, Springer, Berlin, 1977, p. 15.
|
[29] |
P.K. Ray, M. Akinc, and M.J. Kramer, Formation of multilayered scale during the oxidation of NiAl–Mo alloy, Appl. Surf. Sci., 301(2014), p. 107. doi: 10.1016/j.apsusc.2014.01.148
|
[30] |
L. Qin, P. Ren, Y.L. Yi, et al., Effect of Al2O3 content on the high-temperature oxidation behaviour of CoCrAlYTa coatings produced by laser-induction hybrid cladding, Corros. Sci., 209(2022), art. No. 110739. doi: 10.1016/j.corsci.2022.110739
|
[31] |
Y. Hirata, T. Shimonosono, S. Sameshima, and H. Tominaga, Sintering of alumina powder compacts and their compressive mechanical properties, Ceram. Int., 41(2015), No. 9, p. 11449. doi: 10.1016/j.ceramint.2015.05.109
|