Cite this article as:

Liuyi Ren, Bo Liu, Shenxu Bao, Wei Ding, Yimin Zhang, Xiaochuan Hou, Chao Lin, and Bo Chen, Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.518-530. https://dx.doi.org/10.1007/s12613-023-2735-1
Liuyi Ren, Bo Liu, Shenxu Bao, Wei Ding, Yimin Zhang, Xiaochuan Hou, Chao Lin, and Bo Chen, Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.518-530. https://dx.doi.org/10.1007/s12613-023-2735-1
引用本文 PDF XML SpringerLink

有机酸辅助回收废旧锂离子电池中的Li、Ni、Co和Mn:工艺优化及浸出机理

摘要: 随着电动汽车和便携式电子产品用量的不断增长以及对可持续资源管理需求的提升,废旧锂离子电池的回收变得越来越重要。对废旧锂离子电池进行合理的回收利用,不仅可以促进有价资源的循环利用,同时也可以消除其对环境的负面影响。在本研究中提出了一种新型环保的湿法冶金工艺,以柠檬酸作为还原剂,硫酸作为浸出剂从废旧三元锂电池中回收锂(Li)、镍(Ni)、钴(Co)和锰(Mn)。考察了硫酸浓度、浸出温度、浸出时间、固液比和还原剂种类及用量对目标金属元素浸出行为的影响。在此基础上利用响应面法(RSM)对试验参数进行了优化,以实现最大限度地从废旧三元锂电池中回收目标金属。结果表明,在硫酸浓度为1.16 mol/L,柠檬酸用量为15wt%,固液比为40 g/L,浸出温度为83°C,浸出时间为120 min的条件下,Li、Ni、Co和Mn的最大浸出率分别可达99.08%、98.76%、98.33%和97.63%。在硫酸与柠檬酸协同浸出过程中,柠檬酸能够提供具有强还原作用的 \textCO_\text2^\text·- 与正极材料中高价态的过渡金属离子发生还原反应生成低价态的过渡金属离子,破坏正极活性物质的结构,促进目标金属的浸出。此外,柠檬酸还可以水解提供H+,较高的H+浓度一方面促进了有价金属的浸出,另一方面降低了所需的硫酸浓度和硫酸用量,因此,柠檬酸在浸出过程中除了能作为还原剂以外,还可以作为协同浸出剂起到强化酸浸出的作用。本研究为采用还原性有机酸从废旧三元锂离子电池混合电极材料中绿色、安全、高效回收有价金属提供了新的思路和技术方案。

 

Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism

Abstract: The proper recycling of spent lithium-ion batteries (LIBs) can promote the recovery and utilization of valuable resources, while also negative environmental effects resulting from the presence of toxic and hazardous substances. In this study, a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn) from spent LIBs using sulfuric acid with citric acid as a reductant. The effects of the concentration of sulfuric acid, the leaching temperature, the leaching time, the solid–liquid ratio, and the reducing agent dosage on the leaching behavior of the above elements were investigated. Key parameters were optimized using response surface methodology (RSM) to maximize the recovery of metals from spent LIBs. The maximum recovery efficiencies of Li, Ni, Co, and Mn can reach 99.08%, 98.76%, 98.33%, and 97.63%. under the optimized conditions (the sulfuric acid concentration was 1.16 mol/L, the citric acid dosage was 15wt%, the solid–liquid ratio was 40 g/L, and the temperature was 83°C for 120 min), respectively. It was found that in the collaborative leaching process of sulfuric acid and citric acid, the citric acid initially provided strong reducing \textCO_\text2^\text·- , and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state. Additionally, citric acid can also act as a proton donor and chelate with lower-priced transition metal ions, thus speeding up the dissolution process.

 

/

返回文章
返回