留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  847
  • HTML全文浏览量:  277
  • PDF下载量:  74
  • 被引次数: 0
Liuyi Ren, Bo Liu, Shenxu Bao, Wei Ding, Yimin Zhang, Xiaochuan Hou, Chao Lin, and Bo Chen, Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 518-530. https://doi.org/10.1007/s12613-023-2735-1
Cite this article as:
Liuyi Ren, Bo Liu, Shenxu Bao, Wei Ding, Yimin Zhang, Xiaochuan Hou, Chao Lin, and Bo Chen, Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 518-530. https://doi.org/10.1007/s12613-023-2735-1
引用本文 PDF XML SpringerLink
研究论文

有机酸辅助回收废旧锂离子电池中的Li、Ni、Co和Mn:工艺优化及浸出机理


  • 通讯作者:

    包申旭    E-mail: sxbao@whut.edu.cn

    丁威    E-mail: dingwei@mails.swust.edu.cn

文章亮点

  • (1) 提出了一种从废旧锂离子电池正极材料中绿色、安全回收有价金属的湿法冶金工艺
  • (2) 利用响应面法对酸浸过程主要浸出参数进行优化。
  • (3) 揭示了柠檬酸作为还原剂的作用机理。
  • 随着电动汽车和便携式电子产品用量的不断增长以及对可持续资源管理需求的提升,废旧锂离子电池的回收变得越来越重要。对废旧锂离子电池进行合理的回收利用,不仅可以促进有价资源的循环利用,同时也可以消除其对环境的负面影响。在本研究中提出了一种新型环保的湿法冶金工艺,以柠檬酸作为还原剂,硫酸作为浸出剂从废旧三元锂电池中回收锂(Li)、镍(Ni)、钴(Co)和锰(Mn)。考察了硫酸浓度、浸出温度、浸出时间、固液比和还原剂种类及用量对目标金属元素浸出行为的影响。在此基础上利用响应面法(RSM)对试验参数进行了优化,以实现最大限度地从废旧三元锂电池中回收目标金属。结果表明,在硫酸浓度为1.16 mol/L,柠檬酸用量为15wt%,固液比为40 g/L,浸出温度为83°C,浸出时间为120 min的条件下,Li、Ni、Co和Mn的最大浸出率分别可达99.08%、98.76%、98.33%和97.63%。在硫酸与柠檬酸协同浸出过程中,柠檬酸能够提供具有强还原作用的$ {\text{CO}}_{\text{2}}^{\text{·}-} $与正极材料中高价态的过渡金属离子发生还原反应生成低价态的过渡金属离子,破坏正极活性物质的结构,促进目标金属的浸出。此外,柠檬酸还可以水解提供H+,较高的H+浓度一方面促进了有价金属的浸出,另一方面降低了所需的硫酸浓度和硫酸用量,因此,柠檬酸在浸出过程中除了能作为还原剂以外,还可以作为协同浸出剂起到强化酸浸出的作用。本研究为采用还原性有机酸从废旧三元锂离子电池混合电极材料中绿色、安全、高效回收有价金属提供了新的思路和技术方案。
  • Research Article

    Recovery of Li, Ni, Co and Mn from spent lithium-ion batteries assisted by organic acids: Process optimization and leaching mechanism

    + Author Affiliations
    • The proper recycling of spent lithium-ion batteries (LIBs) can promote the recovery and utilization of valuable resources, while also negative environmental effects resulting from the presence of toxic and hazardous substances. In this study, a new environmentally friendly hydro-metallurgical process was proposed for leaching lithium (Li), nickel (Ni), cobalt (Co), and manganese (Mn) from spent LIBs using sulfuric acid with citric acid as a reductant. The effects of the concentration of sulfuric acid, the leaching temperature, the leaching time, the solid–liquid ratio, and the reducing agent dosage on the leaching behavior of the above elements were investigated. Key parameters were optimized using response surface methodology (RSM) to maximize the recovery of metals from spent LIBs. The maximum recovery efficiencies of Li, Ni, Co, and Mn can reach 99.08%, 98.76%, 98.33%, and 97.63%. under the optimized conditions (the sulfuric acid concentration was 1.16 mol/L, the citric acid dosage was 15wt%, the solid–liquid ratio was 40 g/L, and the temperature was 83°C for 120 min), respectively. It was found that in the collaborative leaching process of sulfuric acid and citric acid, the citric acid initially provided strong reducing $ {\text{CO}}_{\text{2}}^{\text{·}-} $, and the transition metal ions in the high state underwent a reduction reaction to produce transition metal ions in the low state. Additionally, citric acid can also act as a proton donor and chelate with lower-priced transition metal ions, thus speeding up the dissolution process.
    • loading
    • [1]
      M. Meinshausen, N. Meinshausen, W. Hare, et al., Greenhouse-gas emission targets for limiting global warming to 2 degrees C, Nature, 458(2009), No. 7242, p. 1158. doi: 10.1038/nature08017
      [2]
      H.S. Chen, T.N. Cong, W. Yang, C.Q. Tan, Y.L. Li, and Y.L. Ding, Progress in electrical energy storage system: A critical review, Prog. Nat. Sci., 19(2009), No. 3, p. 291. doi: 10.1016/j.pnsc.2008.07.014
      [3]
      B. Scrosati, J. Hassoun, and Y.K. Sun, Lithium-ion batteries. A look into the future, Energy Environ. Sci., 4(2011), No. 9, art. No. 3287. doi: 10.1039/c1ee01388b
      [4]
      V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, Challenges in the development of advanced Li-ion batteries: A review, Energy Environ. Sci., 4(2011), No. 9, p. 3243. doi: 10.1039/c1ee01598b
      [5]
      M.M. Wang, C.C. Zhang, and F.S. Zhang, An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach, Waste Manage., 51(2016), p. 239. doi: 10.1016/j.wasman.2016.03.006
      [6]
      Y.J. Yu, B. Chen, K. Huang, X. Wang, and D. Wang, Environmental impact assessment and end-of-life treatment policy analysis for Li-ion batteries and Ni-MH batteries, Int. J. Environ. Res. Public Health, 11(2014), No. 3, p. 3185. doi: 10.3390/ijerph110303185
      [7]
      D. Lisbona and T. Snee, A review of hazards associated with primary lithium and lithium-ion batteries, Process Saf. Environ. Prot., 89(2011), No. 6, p. 434. doi: 10.1016/j.psep.2011.06.022
      [8]
      X.L. Zeng and J.H. Li, Spent rechargeable lithium batteries in e-waste: Composition and its implications, Front. Environ. Sci. Eng., 8(2014), No. 5, p. 792. doi: 10.1007/s11783-014-0705-6
      [9]
      X.Y. Zhou, W. Yang, X.J. Liu, et al., One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system, Waste Manage., 155(2023), p. 53. doi: 10.1016/j.wasman.2022.10.034
      [10]
      L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
      [11]
      Y.N. Yang, Y.J. Yang, C.L. He, et al., Solvent extraction and separation of cobalt from leachate of spent lithium-ion battery cathodes with N263 in nitrite media, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 897. doi: 10.1007/s12613-022-2571-8
      [12]
      X. Qu, H.W. Xie, X. Chen, et al., Recovery of LiCoO2 from spent lithium-ion batteries through a low-temperature ammonium chloride roasting approach: Thermodynamics and reaction mechanisms, ACS Sustainable Chem. Eng., 8(2020), No. 16, p. 6524. doi: 10.1021/acssuschemeng.0c01205
      [13]
      J.L. Liang, D.B. Wang, L. Wang, H. Li, W.G. Cao, and H.Y. Yan, Electrochemical process for recovery of metallic Mn from waste LiMn2O4-based Li-ion batteries in NaCl–CaCl2 melts, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 473. doi: 10.1007/s12613-020-2144-7
      [14]
      H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1715. doi: 10.1007/s12613-021-2366-3
      [15]
      S.X. Bao, B. Chen, Y.M. Zhang, et al., A comprehensive review on the ultrasound-enhanced leaching recovery of valuable metals: Applications, mechanisms and prospects, Ultrason. Sonochem., 98(2023), art. No. 106525. doi: 10.1016/j.ultsonch.2023.106525
      [16]
      R.J. Qiu, Z. Huang, J.Y. Zheng, et al., Energy models and the process of fluid-magnetic separation for recovering cobalt micro-particles from vacuum reduction products of spent lithium ion batteries, J. Cleaner Prod., 279(2021), art. No. 123230. doi: 10.1016/j.jclepro.2020.123230
      [17]
      K.H. Gu, W.P. Zheng, B.D. Ding, J.W. Han, and W.Q. Qin, Comprehensive extraction of valuable metals from waste ternary lithium batteries via roasting and leaching: Thermodynamic and kinetic studies, Miner. Eng., 186(2022), art. No. 107736. doi: 10.1016/j.mineng.2022.107736
      [18]
      W. Ding, S.X. Bao, Y.M. Zhang, et al., Stepwise recycling of valuable metals from spent lithium-ion batteries based on in situ thermal reduction and ultrasonic-assisted water leaching, Green Chem., 25(2023), No. 17, p. 6652. doi: 10.1039/D3GC01673K
      [19]
      T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, and M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources, 207(2012), p. 173. doi: 10.1016/j.jpowsour.2012.01.152
      [20]
      L. Li, E.S. Fan, Y.B. Guan, et al., Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustainable Chem. Eng., 5(2017), No. 6, p. 5224. doi: 10.1021/acssuschemeng.7b00571
      [21]
      R. Golmohammadzadeh, F. Rashchi, and E. Vahidi, Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects, Waste Manage., 64(2017), p. 244. doi: 10.1016/j.wasman.2017.03.037
      [22]
      P. Meshram, B.D. Pandey, and T.R. Mankhand, Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng. J., 281(2015), p. 418. doi: 10.1016/j.cej.2015.06.071
      [23]
      E. Gratz, Q.N. Sa, D. Apelian, and Y. Wang, A closed loop process for recycling spent lithium ion batteries, J. Power Sources, 262(2014), p. 255. doi: 10.1016/j.jpowsour.2014.03.126
      [24]
      Y.J. Shih, S.K. Chien, S.R. Jhang, and Y.C. Lin, Chemical leaching, precipitation and solvent extraction for sequential separation of valuable metals in cathode material of spent lithium ion batteries, J. Taiwan Inst. Chem. Eng., 100(2019), p. 151. doi: 10.1016/j.jtice.2019.04.017
      [25]
      L. Xing, J.R. Bao, S.Y. Zhou, et al., Ultra-fast leaching of critical metals from spent lithium-ion batteries cathode materials achieved by the synergy-coordination mechanism, Chem. Eng. J., 420(2021), art. No. 129593. doi: 10.1016/j.cej.2021.129593
      [26]
      D.D. Chen, S. Rao, D.X. Wang, H.Y. Cao, W.M. Xie, and Z.Q. Liu, Synergistic leaching of valuable metals from spent Li-ion batteries using sulfuric acid-L-ascorbic acid system, Chem. Eng. J., 388(2020), art. No. 124321. doi: 10.1016/j.cej.2020.124321
      [27]
      Y.Y. Wang, T.Y. Wang, L.J. Wu, et al., Recovery of valuable metals from spent ternary Li-ion batteries: Dissolution with amidosulfonic acid and D-glucose, Hydrometallurgy, 190(2019), art. No. 105162. doi: 10.1016/j.hydromet.2019.105162
      [28]
      M.G. Berhe, H.G. Oh, S.K. Park, and D. Lee, Laser cutting of silicon anode for lithium-ion batteries, J. Mater. Res. Technol., 16(2022), p. 322. doi: 10.1016/j.jmrt.2021.11.135
      [29]
      J.W. Bao, Z.G. Liu, M.S. Chu, et al., Multi-objective collaborative optimization of metallurgical properties of iron carbon agglomerates using response surface methodology, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1917. doi: 10.1007/s12613-020-2188-8
      [30]
      L. Li, L.Y. Zhai, X.X. Zhang, et al., Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, J. Power Sources, 262(2014), p. 380. doi: 10.1016/j.jpowsour.2014.04.013
      [31]
      Q.X. Zheng, M. Watanabe, Y. Iwatate, et al., Hydrothermal leaching of ternary and binary lithium-ion battery cathode materials with citric acid and the kinetic study, J. Supercrit. Fluids, 165(2020), art. No. 104990. doi: 10.1016/j.supflu.2020.104990
      [32]
      W. Ding, S.X. Bao, Y.M. Zhang, and J.H. Xiao, Efficient selective extraction of scandium from red mud, Miner. Process. Extr. Metall. Rev., 44(2023), No. 4, p. 304. doi: 10.1080/08827508.2022.2047044
      [33]
      W. Ding, S.X. Bao, Y.M. Zhang, B. Chen, X.L. Wan, and J.H. Xiao, Innovative recovery of gallium and zinc from corundum flue dust by ultrasound-assisted H2SO4 leaching, Miner. Process. Extr. Metall. Rev., 2023. https://doi.org/10.1080/08827508.2023.2196073
      [34]
      L. Li, J. Ge, F. Wu, R.J. Chen, S. Chen, and B.R. Wu, Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant, J. Hazard. Mater., 176(2010), No. 1-3, p. 288. doi: 10.1016/j.jhazmat.2009.11.026
      [35]
      Z.J. Yang, K.K. Wang, and Y. Yang, Optimization of ECAP–RAP process for preparing semisolid billet of 6061 aluminum alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 792. doi: 10.1007/s12613-019-1895-5
      [36]
      P. Belibagli, Z. Isik, M.A. Mazmanci, and N. Dizge, Phosphate recovery from waste fish bones ash by acidic leaching method and iron phosphate production using electrocoagulation method, J. Cleaner Prod., 373(2022), art. No. 133499. doi: 10.1016/j.jclepro.2022.133499
      [37]
      Markandeya, N. Dhiman, S.P. Shukla, and G.C. Kisku, Statistical optimization of process parameters for removal of dyes from wastewater on chitosan cenospheres nanocomposite using response surface methodology, J. Cleaner Prod., 149(2017), p. 597. doi: 10.1016/j.jclepro.2017.02.078
      [38]
      X. Qin, Z.Y. Wang, C.R. Guo, R. Guo, Y. Lv, and M.R. Li, Fulvic acid degradation in Fenton-like system with bimetallic magnetic carbon aerogel Cu–Fe@CS as catalyst: Response surface optimization, kinetic and mechanism, J. Environ. Manage., 306(2022), art. No. 114500. doi: 10.1016/j.jenvman.2022.114500
      [39]
      J.C. Qin, S.Y. Ning, J.S. Zeng, et al., Leaching behavior and process optimization of tin recovery from waste liquid crystal display under mechanical activation, J. Cleaner Prod., 399(2023), art. No. 136640. doi: 10.1016/j.jclepro.2023.136640
      [40]
      D.M. Angelucci, D. Piscitelli, and M.C. Tomei, Pentachlorophenol biodegradation in two-phase bioreactors operated with absorptive polymers: Box-Behnken experimental design and optimization by response surface methodology, Process. Saf. Environ. Prot., 131(2019), p. 105. doi: 10.1016/j.psep.2019.09.005
      [41]
      Y. Li, C. Chen, J. Zhang, and Y.Q. Lan, Catalytic role of Cu(II) in the reduction of Cr(VI) by citric acid under an irradiation of simulated solar light, Chemosphere, 127(2015), p. 87. doi: 10.1016/j.chemosphere.2015.01.014
      [42]
      Y. Shiraishi, H. Tanaka, H. Sakamoto, S. Ichikawa, and T. Hirai, Photoreductive synthesis of monodispersed Au nanoparticles with citric acid as reductant and surface stabilizing reagent, RSC Adv., 7(2017), No. 11, p. 6187. doi: 10.1039/C6RA27771C

    Catalog


    • /

      返回文章
      返回