Cite this article as:

Chunlin He, Yun Liu, Mingwei Qi, Zunzhang Liu, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, and Wenchao Yang, A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.585-598. https://dx.doi.org/10.1007/s12613-023-2737-z
Chunlin He, Yun Liu, Mingwei Qi, Zunzhang Liu, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma, and Wenchao Yang, A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.585-598. https://dx.doi.org/10.1007/s12613-023-2737-z
引用本文 PDF XML SpringerLink

H3PO4和ZnCl2改性废弃胺肟树脂制备功能化活性炭吸附剂及其对Cr(VI)的吸附性能

摘要: 随着树脂在各个领域的应用,产生了大量难以处理的废弃树脂。含Cr(VI)的工业废水严重污染了土壤和地下水环境,从而危及人类健康。因此,本文以废弃胺肟树脂为原料,采用H3PO4和ZnCl2对废弃胺肟树脂进行改性,然后通过缓慢热分解方式进行碳化,合成了一种新型功能化介孔吸附材料PPR-Z,用于吸附Cr(VI)。PPR-Z的静态吸附符合准二阶动力学模型和Langmuir等温线模型,表明PPR-Z对Cr(VI)的吸附主要为单层化学吸附。吸附材料对Cr(VI)的饱和吸附量可达255.86 mg/g,对电镀废水中的Cr(VI)表现出良好的选择性。吸附剂可以有效地将Cr(VI)还原为Cr(III),降低对土壤和地下水的毒性。吸附的主要机制是静电和配位协调作用。本文中制备的吸附剂不仅解决了废弃树脂的处理问题,而且有效地控制了Cr(VI)污染,实现了“以废治废”的理念

 

A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption

Abstract: With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(VI) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(VI). The waste amidoxime resin was first modified with H3PO4 and ZnCl2, and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(VI) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(VI) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(VI) to Cr(III) and decrease the toxicity of Cr(VI) during adsorption. PPR-Z exhibited Cr(VI) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(VI) adsorption are the chemical reduction of Cr(VI) into Cr(III) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(VI) pollution and realizes the concept of “treating waste with waste”.

 

/

返回文章
返回