留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(6)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  412
  • HTML全文浏览量:  186
  • PDF下载量:  20
  • 被引次数: 0
Chunlin He, Yun Liu, Mingwei Qi, Zunzhang Liu, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma,  and Wenchao Yang, A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 585-598. https://doi.org/10.1007/s12613-023-2737-z
Cite this article as:
Chunlin He, Yun Liu, Mingwei Qi, Zunzhang Liu, Yuezhou Wei, Toyohisa Fujita, Guifang Wang, Shaojian Ma,  and Wenchao Yang, A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 585-598. https://doi.org/10.1007/s12613-023-2737-z
引用本文 PDF XML SpringerLink
研究论文

H3PO4和ZnCl2改性废弃胺肟树脂制备功能化活性炭吸附剂及其对Cr(VI)的吸附性能



  • 通讯作者:

    何春林    E-mail: helink1900@126.com

文章亮点

  • (1) 实现了废弃胺肟废树脂的再利用。
  • (2) 用H3PO4和ZnCl2改性废弃胺肟树脂制备吸附剂。
  • (3) 吸附剂能有效的吸附Cr(VI),在吸附和解吸过程中能将Cr(VI)还原。
  • (4) 吸附剂的饱和吸附容量为255.86 mg/g,具有良好的选择性。
  • 随着树脂在各个领域的应用,产生了大量难以处理的废弃树脂。含Cr(VI)的工业废水严重污染了土壤和地下水环境,从而危及人类健康。因此,本文以废弃胺肟树脂为原料,采用H3PO4和ZnCl2对废弃胺肟树脂进行改性,然后通过缓慢热分解方式进行碳化,合成了一种新型功能化介孔吸附材料PPR-Z,用于吸附Cr(VI)。PPR-Z的静态吸附符合准二阶动力学模型和Langmuir等温线模型,表明PPR-Z对Cr(VI)的吸附主要为单层化学吸附。吸附材料对Cr(VI)的饱和吸附量可达255.86 mg/g,对电镀废水中的Cr(VI)表现出良好的选择性。吸附剂可以有效地将Cr(VI)还原为Cr(III),降低对土壤和地下水的毒性。吸附的主要机制是静电和配位协调作用。本文中制备的吸附剂不仅解决了废弃树脂的处理问题,而且有效地控制了Cr(VI)污染,实现了“以废治废”的理念
  • Research Article

    A functionalized activated carbon adsorbent prepared from waste amidoxime resin by modifying with H3PO4 and ZnCl2 and its excellent Cr(VI) adsorption

    + Author Affiliations
    • With the application of resins in various fields, numerous waste resins that are difficult to treat have been produced. The industrial wastewater containing Cr(VI) has severely polluted soil and groundwater environments, thereby endangering human health. Therefore, in this paper, a novel functionalized mesoporous adsorbent PPR-Z was synthesized from waste amidoxime resin for adsorbing Cr(VI). The waste amidoxime resin was first modified with H3PO4 and ZnCl2, and subsequently, it was carbonized through slow thermal decomposition. The static adsorption of PPR-Z conforms to the pseudo-second-order kinetic model and Langmuir isotherm, indicating that the Cr(VI) adsorption by PPR-Z is mostly chemical adsorption and exhibits single-layer adsorption. The saturated adsorption capacity of the adsorbent for Cr(VI) could reach 255.86 mg/g. The adsorbent could effectively reduce Cr(VI) to Cr(III) and decrease the toxicity of Cr(VI) during adsorption. PPR-Z exhibited Cr(VI) selectivity in electroplating wastewater. The main mechanisms involved in the Cr(VI) adsorption are the chemical reduction of Cr(VI) into Cr(III) and electrostatic and coordination interactions. Preparation of PPR-Z not only solves the problem of waste resin treatment but also effectively controls Cr(VI) pollution and realizes the concept of “treating waste with waste”.
    • loading
    • Supplementary Information-s12613-023-2737-z.docx
    • [1]
      C.L. He, Y. Liu, C.H. Zheng, et al., Utilization of waste amine-oxime (WAO) resin to generate carbon by microwave and its removal of Pb(II) in water, Toxics, 10(2022), No. 9, art. No. 489. doi: 10.3390/toxics10090489
      [2]
      C.H. Zheng, C.L. He, Y.J. Yang, T. Fujita, G.F. Wang, and W.C. Yang, Characterization of waste amidoxime chelating resin and its reutilization performance in adsorption of Pb(II), Cu(II), Cd(II) and Zn(II) ions, Metals, 12(2022), No. 1, art. No. 149. doi: 10.3390/met12010149
      [3]
      Z. Laili, M.S. Yasir, and M.A. Wahab, Solidification of radioactive waste resins using cement mixed with organic material, AIP Conf. Proc., 1659(2015), art. No. 050006.
      [4]
      S. Keck, O. Liske, K. Seidler, et al., Synthesis of a liquid lignin-based methacrylate resin and its application in 3D printing without any reactive diluents, Biomacromolecules, 24(2023), No. 4, p. 1751. doi: 10.1021/acs.biomac.2c01505
      [5]
      S.H. Yang, H. Fang, H. Li, et al., Synthesis of tung oil-based vinyl ester resin and its application for anti-corrosion coatings, Prog. Org. Coat., 170(2022), art. No. 106967. doi: 10.1016/j.porgcoat.2022.106967
      [6]
      J.S. Shon, H.K. Lee, T.J. Kim, J.W. Choi, W.Y. Yoon, and S.B. Ahn, Evaluation of utility of the cement solidification process of waste ion exchange resin, Toxics, 10(2022), No. 3, art. No. 120. doi: 10.3390/toxics10030120
      [7]
      U.K. Chun, K. Choi, K.H. Yang, J.K. Park, and M.J. Song, Waste minimization pretreatment via pyrolysis and oxidative pyroylsis of organic ion exchange resin, Waste Manage., 18(1998), No. 3, p. 183. doi: 10.1016/S0956-053X(98)00020-8
      [8]
      X.B. Zhang, M. Liu, and X. Gao, The co-combustion and pollutant emission characteristics of the three kinds of waste ion exchange resins and coal, Int. J. Chem. React. Eng., 18(2020), No. 8, art. No. 20200053.
      [9]
      X.J. Peng, W. Zeng, H.H. Miao, S.J. Lu, and S.S. Li, A novel carbon adsorbent derived from iron-poisoned waste resin for phosphate removal from wastewater: Performance and mechanism, Process. Saf. Environ. Prot., 168(2022), p. 324. doi: 10.1016/j.psep.2022.10.003
      [10]
      Y. Yang, J.C. Qian, Z. Yu, L. Shi, and X. Meng, Preparation of hierarchically porous carbon spheres derived from waste resins and its application in water purification, J. Porous Mater., 26(2019), No. 1, p. 163. doi: 10.1007/s10934-018-0631-2
      [11]
      M. Wojtaszek and R. Wasielewski, The use of waste ion exchange resins as components of the coal charge for the production of metallurgical coke, Fuel, 286(2021), art. No. 119249. doi: 10.1016/j.fuel.2020.119249
      [12]
      C. Campillo-Cora, L. Rodríguez-González, M. Arias-Estévez, D. Fernández-Calviño, and D. Soto-Gómez, Influence of physicochemical properties and parent material on chromium fractionation in soils, Processes, 9(2021), No. 6, art. No. 1073. doi: 10.3390/pr9061073
      [13]
      R.N. Bharagava and S. Mishra, Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment plant of tannery industries, Ecotoxicol. Environ. Saf., 147(2018), p. 102. doi: 10.1016/j.ecoenv.2017.08.040
      [14]
      M. Shahid, S. Shamshad, M. Rafiq, et al., Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review, Chemosphere, 178(2017), p. 513. doi: 10.1016/j.chemosphere.2017.03.074
      [15]
      L.Q. Liang, J.H. Wang, and Y.X. Zhang, Magnetic mesoporous carbon hollow microspheres adsorbents for the efficient removal of Cr(III) and Cr(III)-EDTA in high salinity water, Microporous Mesoporous Mater., 347(2023), art. No. 112344. doi: 10.1016/j.micromeso.2022.112344
      [16]
      Q. Sun, C.L. Wang, L.X. Zhang, and Y.Z. Yang, Thiourea crosslinked-amino modified graphene nanoflakes as an effective adsorbent to confine Cr(VI) via multiple combination mechanisms, J. Cleaner Prod., 374(2022), art. No. 134030. doi: 10.1016/j.jclepro.2022.134030
      [17]
      A. Zhitkovich, Chromium in drinking water: Sources, metabolism, and cancer risks, Chem. Res. Toxicol., 24(2011), No. 10, p. 1617. doi: 10.1021/tx200251t
      [18]
      S. Alharthi, S.A. Alharthy, E.S.A. Manaa, M.O.A. El-Magied, and W.M. Salem, High adsorption performance of Cr(VI) ions from the electroplating waste solution using surface-modified porous poly 2-((methacryloxy)methyl)oxirane polymers, Z. Anorg. Allg. Chem., 648(2022), No. 19, art. No. e202100327. doi: 10.1002/zaac.202100327
      [19]
      H. Peng and J. Guo, Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review, Environ. Chem. Lett., 18(2020), No. 6, p. 2055. doi: 10.1007/s10311-020-01058-x
      [20]
      A. Shishov, P. Terno, L. Moskvin, and A. Bulatov, In-syringe dispersive liquid-liquid microextraction using deep eutectic solvent as disperser: Determination of chromium (VI) in beverages, Talanta, 206(2020), art. No. 120209. doi: 10.1016/j.talanta.2019.120209
      [21]
      H.M. Xu, J.F. Wei, and X.L. Wang, Nanofiltration hollow fiber membranes with high charge density prepared by simultaneous electron beam radiation-induced graft polymerization for removal of Cr(VI), Desalination, 346(2014), p. 122. doi: 10.1016/j.desal.2014.05.017
      [22]
      K.G. Pavithra, P.S. Kumar, F.C. Christopher, and A. Saravanan, Removal of toxic Cr(VI) ions from tannery industrial wastewater using a newly designed three-phase three-dimensional electrode reactor, J. Phys. Chem. Solids, 110(2017), p. 379. doi: 10.1016/j.jpcs.2017.07.002
      [23]
      M. Imron, S.B. Kurniawan, and I. Purwanti, Biosorption of chromium by living cells of azotobacter S8, bacillus subtilis and pseudomonas aeruginosa using batch system reactor, J. Ecol. Eng., 20(2019), No. 6, p. 184. doi: 10.12911/22998993/108629
      [24]
      X. Duan, R. Lv, and Z. Kong, An anionic metal–organic framework for selective adsorption separation toward methylene blue and rhodamine B, Z. Anorg. Allg. Chem., 646(2020), No. 17, p. 1408. doi: 10.1002/zaac.202000264
      [25]
      X. Duan, R. Lv, S. Li, J.X. Tang, J.Y. Ge, and D. Zhao, Two –COOH decorated anionic metal–organic frameworks with open Cu2+ sites afforded highly C2H2/CO2 and C2H2/CH4 separation and removal of organic dyes, Z. Anorg. Allg. Chem., 645(2019), No. 14, p. 955. doi: 10.1002/zaac.201900111
      [26]
      F.J. Zheng, Z.Y. Ren, B. Xu, et al., Elucidating multiple-scale reaction behaviors of phenolic resin pyrolysis via TG-FTIR and ReaxFF molecular dynamics simulations, J. Anal. Appl. Pyrolysis, 157(2021), art. No. 105222. doi: 10.1016/j.jaap.2021.105222
      [27]
      T. Ahamad and S.M. Alshehri, Thermal degradation and evolved gas analysis: A polymeric blend of urea formaldehyde (UF) and epoxy (DGEBA) resin, Arab. J. Chem., 7(2014), No. 6, p. 1140. doi: 10.1016/j.arabjc.2013.04.013
      [28]
      S.Q. Wang, H. Chen, and X.M. Zhang, Transformation of aromatic structure of vitrinite with different coal ranks by HRTEM in situ heating, Fuel, 260(2020), art. No. 116309. doi: 10.1016/j.fuel.2019.116309
      [29]
      S. Rodrigues, I. Suárez-Ruiz, M. Marques, I. Camean, and D. Flores, Microstructural evolution of high temperature treated anthracites of different rank, Int. J. Coal Geol., 87(2011), No. 3-4, p. 204. doi: 10.1016/j.coal.2011.06.009
      [30]
      G.S. Jiang, M.L. Chen, Y.Z. Sun, and J.Q. Pan, Dual N-doped porous carbon derived from pyrolytic carbon black and critical PANIs constructing high-performance Zn ion hybrid supercapacitor, J. Energy Storage, 63(2023), art. No. 106955. doi: 10.1016/j.est.2023.106955
      [31]
      J. Liang, X.G. Duan, X.Y. Xu, et al., Biomass-derived pyrolytic carbons accelerated Fe(III)/Fe(II) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms, Appl. Catal. B, 297(2021), art. No. 120446. doi: 10.1016/j.apcatb.2021.120446
      [32]
      S.A. Fahad, M.S. Nawab, M.A. Shaida, et al., Carbon based adsorbents for the removal of U(VI) from aqueous medium: A state of the art review, J. Water Process. Eng., 52(2023), art. No. 103458. doi: 10.1016/j.jwpe.2022.103458
      [33]
      A.S. Yusuff, M.A. Lala, K.A. Thompson-Yusuff, and E.O. Babatunde, ZnCl2-modified eucalyptus bark biochar as adsorbent: Preparation, characterization and its application in adsorption of Cr(VI) from aqueous solutions, S. Afr. J. Chem. Eng., 42(2022), p. 138.
      [34]
      G. Abdul, X.Y. Zhu, and B.L. Chen, Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters, Chem. Eng. J., 319(2017), p. 9. doi: 10.1016/j.cej.2017.02.074
      [35]
      L.X. Zhang, S.Y. Tang, F.X. He, Y. Liu, W. Mao, and Y.T. Guan, Highly efficient and selective capture of heavy metals by poly(acrylic acid) grafted chitosan and biochar composite for wastewater treatment, Chem. Eng. J., 378(2019), art. No. 122215. doi: 10.1016/j.cej.2019.122215
      [36]
      A.S. Yusuff, Adsorption of hexavalent chromium from aqueous solution by Leucaena leucocephala seed pod activated carbon: Equilibrium, kinetic and thermodynamic studies, Arab J. Basic Appl. Sci., 26(2019), No. 1, p. 89. doi: 10.1080/25765299.2019.1567656
      [37]
      S.Z. Xu, S.Y. Ning, Wang Y., et al., Precise separation and efficient enrichment of palladium from wastewater by amino-functionalized silica adsorbent, J. Cleaner Prod., 396(2023), art. No. 136479. doi: 10.1016/j.jclepro.2023.136479
      [38]
      X. Tao, F.X. Chen, J. Li, Y.L. Liu, X.W. Hu, and R. Chen, Efficient promotion of Cr(VI) removal over Bi2S3 nanoparticles with cupric ions: Potential applications in electroplating wastewater and contaminated groundwater, Sep. Purif. Technol., 303(2022), art. No. 122114. doi: 10.1016/j.seppur.2022.122114
      [39]
      M. Pourrahmati-Shiraz, A. Mohagheghian, and M. Shirzad-Siboni, Synthesis of ZnO immobilized on recycled polyethylene terephtalate for sonocatalytic removal of Cr(VI) from synthetic, drinking waters and electroplating wastewater, J. Environ. Manage., 324(2022), art. No. 116395. doi: 10.1016/j.jenvman.2022.116395
      [40]
      Y.N. He, J.B. Chen, J.P. Lv, et al., Separable amino-functionalized biochar/alginate beads for efficient removal of Cr(VI) from original electroplating wastewater at room temperature, J. Cleaner Prod., 373(2022), art. No. 133790. doi: 10.1016/j.jclepro.2022.133790
      [41]
      A.P. LaGrow, M.O. Besenhard, A. Hodzic, et al., Unravelling the growth mechanism of the co-precipitation of iron oxide nanoparticles with the aid of synchrotron X-ray diffraction in solution, Nanoscale, 11(2019), No. 14, p. 6620. doi: 10.1039/C9NR00531E
      [42]
      Y. Ding, N.T.H. Nhung, J. An, et al., Manganese–titanium mixed ion sieves for the selective adsorption of lithium ions from an artificial salt lake brine, Materials, 16(2023), No. 11, art. No. 4190. doi: 10.3390/ma16114190
      [43]
      M. Islam, M. Angove, D. Morton, B. Pramanik, and M. R. Awual, A mechanistic approach of chromium (VI) adsorption onto manganese oxides and boehmite, J. Environ. Chem. Eng., 8(2020), art. No. 103515. doi: 10.1016/j.jece.2019.103515
      [44]
      H.Y. Li, N. Li, P.P. Zuo, S.J. Qu, and W.Z. Shen, Efficient adsorption-reduction synergistic effects of sulfur, nitrogen and oxygen heteroatom co-doped porous carbon spheres for chromium(VI) removal, Colloids Surf. A, 618(2021), art. No. 126502. doi: 10.1016/j.colsurfa.2021.126502
      [45]
      A. Pholosi, E.B. Naidoo, and A.E. Ofomaja, Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: A comparative kinetic and diffusion study, S. Afr. J. Chem. Eng., 32(2020), p. 39.
      [46]
      B. Ghanim, T.F. O’Dwyer, J.J. Leahy, et al., Application of KOH modified seaweed hydrochar as a biosorbent of vanadium from aqueous solution: Characterisations, mechanisms and regeneration capacity, J. Environ. Chem. Eng., 8(2020), No. 5, art. No. 104176. doi: 10.1016/j.jece.2020.104176
      [47]
      K. Yang, J. Xing, P. Xu, J. Chang, Q. Zhang, and K.M. Usman, Activated carbon microsphere from sodium lignosulfonate for Cr(VI) adsorption evaluation in wastewater treatment, Polymers, 12(2020), No. 1, art. No. 236. doi: 10.3390/polym12010236
      [48]
      Y.Y. Sun, C. Liu, Y.F. Zan, G. Miao, H. Wang, and L.Z. Kong, Hydrothermal carbonization of microalgae (chlorococcum sp.) for porous carbons with high Cr(VI) adsorption performance, Appl. Biochem. Biotechnol., 186(2018), No. 2, p. 414. doi: 10.1007/s12010-018-2752-0
      [49]
      H.J. Xu, Y.X. Liu, H.X. Liang, et al., Adsorption of Cr(VI) from aqueous solutions using novel activated carbon spheres derived from glucose and sodium dodecylbenzene sulfonate, Sci. Total Environ., 759(2021), art. No. 143457. doi: 10.1016/j.scitotenv.2020.143457
      [50]
      R.H. Huang, B.C. Yang, Q. Liu, and Y.P. Liu, Multifunctional activated carbon/chitosan composite preparation and its simultaneous adsorption of phenol and Cr(VI) from aqueous solutions, Environ. Prog. Sustainable Energy, 33(2014), No. 3, p. 814. doi: 10.1002/ep.11844
      [51]
      Z. Al-Qodah, R. Dweiri, M. Khader, et al., Processing and characterization of magnetic composites of activated carbon, fly ash, and beach sand as adsorbents for Cr(VI) removal, Case Stud. Chem. Environ. Eng., 7(2023), art. No. 100333. doi: 10.1016/j.cscee.2023.100333
      [52]
      M.K. Rajput, R. Hazarika, and D. Sarma, Zerovalent iron decorated tea waste derived porous biochar [ZVI@TBC] as an efficient adsorbent for Cd(II) and Cr(VI) removal, J. Environ. Chem. Eng., 11(2023), No. 4, art. No. 110279. doi: 10.1016/j.jece.2023.110279
      [53]
      Z.M. Sun, B.X. Liu, M.Z. Li, C.Q. Li, and S.L. Zheng, Carboxyl-rich carbon nanocomposite based on natural diatomite as adsorbent for efficient removal of Cr(VI), J. Mater. Res. Technol., 9(2020), No. 1, p. 948. doi: 10.1016/j.jmrt.2019.11.034
      [54]
      K.Y. Liu, D.Y. Zhao, Z.F. Hu, et al., The adsorption and reduction of anionic Cr(VI) in groundwater by novel iron carbide loaded on N-doped carbon nanotubes: Effects of Fe-confinement, Chem. Eng. J., 452(2023), art. No. 139357. doi: 10.1016/j.cej.2022.139357
      [55]
      Z.Y. Kang, H. Gao, Z.L. Hu, X.D. Jia, and D.S. Wen, Ni-Fe/reduced graphene oxide nanocomposites for hexavalent chromium reduction in an aqueous environment, ACS Omega, 7(2022), No. 5, p. 4041. doi: 10.1021/acsomega.1c05273
      [56]
      Z. Liu, J.Y. Luo, Y. Peng, Y.H. Yang, Z. Zeng, and L.Q. Li, Preparation of phosphorus-containing porous carbon by direct carbonization for acetone adsorption, Colloids Surf. A, 606(2020), art. No. 125431. doi: 10.1016/j.colsurfa.2020.125431
      [57]
      S.I. Lyubchik, A.I. Lyubchik, O.L. Galushko, et al., Kinetics and thermodynamics of the Cr(III) adsorption on the activated carbon from co-mingled wastes, Colloids Surf. A, 242(2004), No. 1-3, p. 151. doi: 10.1016/j.colsurfa.2004.04.066
      [58]
      W. Ahmed, S. Mehmood, A. Núñez-Delgado, et al., Enhanced adsorption of aqueous Pb(II) by modified biochar produced through pyrolysis of watermelon seeds, Sci. Total Environ., 784(2021), art. No. 147136. doi: 10.1016/j.scitotenv.2021.147136
      [59]
      W. Ahmad, A.S. Bashammakh, A.A. Al-Sibaai, H. Alwael, and M.S. El-Shahawi, Trace determination of Cr(III) and Cr(VI) species in water samples via dispersive liquid–liquid microextraction and microvolume UV–Vis spectrometry. Thermodynamics, speciation study, J. Mol. Liq., 224(2016), p. 1242. doi: 10.1016/j.molliq.2016.10.106
      [60]
      J.J. Chai, Q. Hu, and B. Qiu, Conductive polyaniline improves Cr(VI) bio-reduction by anaerobic granular sludge, Adv. Compos. Hybrid Mater., 4(2021), No. 4, p. 1137. doi: 10.1007/s42114-021-00342-w
      [61]
      R.Q. Li, D. Hu, K. Hu, et al., Coupling adsorption-photocatalytic reduction of Cr(VI) by metal-free N-doped carbon, Sci. Total Environ., 704(2020), art. No. 135284. doi: 10.1016/j.scitotenv.2019.135284
      [62]
      Q.Q. Tang, H. Wu, M.S. Zhou, and D.J. Yang, Preparation of a novel high-performance lignin-based anionic adsorption resin for efficient removal of Cr(VI) in aqueous solutions, Ind. Crops Prod., 199(2023), art. No. 116720. doi: 10.1016/j.indcrop.2023.116720
      [63]
      L. Guo, Y.F. Zhang, J.J. Zheng, et al., Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI), Adv. Compos. Hybrid Mater., 4(2021), No. 3, p. 819. doi: 10.1007/s42114-021-00260-x
      [64]
      X. Dai, N.T.H. Nhung, M.F. Hamza, et al., Selective adsorption and recovery of scandium from red mud leachate by using phosphoric acid pre-treated pitaya peel biochar, Sep. Purif. Technol., 292(2022), art. No. 121043. doi: 10.1016/j.seppur.2022.121043
      [65]
      W. Li, L.F. Chai, B.Y. Du, X.H. Chen, and R.C. Sun, Full-lignin-based adsorbent for removal of Cr(VI) from waste water, Sep. Purif. Technol., 306(2023), art. No. 122644. doi: 10.1016/j.seppur.2022.122644
      [66]
      Z.H. Yang, L.L. Ren, L.F. Jin, et al., In-situ functionalization of poly(m-phenylenediamine) nanoparticles on bacterial cellulose for chromium removal, Chem. Eng. J., 344(2018), p. 441. doi: 10.1016/j.cej.2018.03.086
      [67]
      M.Y. Zhang, L.H. Song, H.F. Jiang, et al., Biomass based hydrogel as an adsorbent for the fast removal of heavy metal ions from aqueous solutions, J. Mater. Chem. A, 5(2017), No. 7, p. 3434. doi: 10.1039/C6TA10513K

    Catalog


    • /

      返回文章
      返回