Cite this article as: |
Yufeng Guo, Jinlai Zhang, Shuai Wang, Jianjun Fan, Haokun Li, Feng Chen, Kuo Liu, and Lingzhi Yang, Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 485-497. https://doi.org/10.1007/s12613-023-2739-x |
王帅 E-mail: wang_shuai@csu.edu.cn
[1] |
F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, and C.C. Yang, Effect of basicity on the structure characteristics of chromium–nickel bearing iron ore pellets, Powder Technol., 342(2019), p. 409. doi: 10.1016/j.powtec.2018.09.100
|
[2] |
B. Hu, P.W. Hu, B. Lu, et al., NO x emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production, Processes, 8(2020), No. 11, art. No. 1470. doi: 10.3390/pr8111470
|
[3] |
Y.F. Guo, K. Liu, F. Chen, et al., Effect of basicity on the reduction swelling behavior and mechanism of limestone fluxed iron ore pellets, Powder Technol., 393(2021), p. 291. doi: 10.1016/j.powtec.2021.07.057
|
[4] |
P. Wang, C.Q. Wang, H.T. Wang, H.M. Long, and T.B. Zhou, Effects of SiO2, CaO and basicity on reduction behaviors and swelling properties of fluxed pellet at different stages, Powder Technol., 396(2022), p. 477. doi: 10.1016/j.powtec.2021.09.080
|
[5] |
W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Clean. Prod., 233(2019), p. 1314. doi: 10.1016/j.jclepro.2019.06.180
|
[6] |
J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, and J.N. Sun, Effects of SiO2 on the preparation and metallurgical properties of acid oxidized pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 629. doi: 10.1007/s12613-020-2236-4
|
[7] |
H.T. Wang and H.Y. Sohn, Effect of CaO and SiO2 on swelling and iron whisker formation during reduction of iron oxide compact, Ironmaking Steelmaking, 38(2011), No. 6, p. 447. doi: 10.1179/1743281211Y.0000000022
|
[8] |
G.C. Zhang, G.P. Luo, and C.C. Sun, Effect of CaF2 on the reduction swelling properties of iron ore briquettes in different reduction stages, Min. Metall. Explor., 38(2021), No. 4, p. 1711.
|
[9] |
T. Umadevi, A. Kumar, P. Karthik, R. Srinidhi, and S. Manjini, Characterisation studies on swelling behaviour of iron ore pellets, Ironmaking Steelmaking, 45(2018), No. 2, p. 157. doi: 10.1080/03019233.2016.1250043
|
[10] |
M.B. Shaik, C. Sekhar, S. Dwarapudi, et al., Characterization of colemanite and its effect on cold compressive strength and swelling index of iron ore pellets, Min. Metall. Explor., 38(2021), No. 1, p. 217. doi: 10.1007/s42461-020-00331-5
|
[11] |
R.K. Dishwar, A.K. Mandal, and O.P. Sinha, Studies on highly fluxed iron ore pellets hardened at 1100°C to 1200°C, Metall. Mater. Trans. B, 50(2019), No. 2, p. 617. doi: 10.1007/s11663-019-01506-2
|
[12] |
R.K. Dishwar and O.P. Sinha, Effect of basicity on the activation energy during reduction of highly fluxed iron ore pellets, Fuel, 296(2021), art. No. 120640. doi: 10.1016/j.fuel.2021.120640
|
[13] |
S. Wang, Y.F. Guo, J.J. Fan, et al., Degradation mechanism of high alumina refractory bricks by reaction with deposits in a rotary kiln for fluxed iron ore pellets production, Ceram. Int., 48(2022), No. 9, p. 12014. doi: 10.1016/j.ceramint.2022.01.059
|
[14] |
K.K. Bai, L.C. Liu, Y.Z. Pan, H.B. Zuo, J.S. Wang, Q.G. Xue, A review: Research progress of flux pellets and their application in China, Ironmaking Steelmaking, 48(2021), p. 1048. doi: 10.1080/03019233.2021.1911770
|
[15] |
S. Dwarapudi, T.K. Ghosh, V. Tathavadkar, M.B. Denys, D. Bhattacharjee, and R. Venugopal, Effect of MgO in the form of magnesite on the quality and microstructure of hematite pellets, Int. J. Miner. Process., 112-113(2012), p. 55. doi: 10.1016/j.minpro.2012.06.006
|
[16] |
M. Iljana, A. Kemppainen, T. Paananen, et al., Effect of adding limestone on the metallurgical properties of iron ore pellets, Int. J. Miner. Process., 141(2015), p. 34. doi: 10.1016/j.minpro.2015.06.004
|
[17] |
S. Dwarapudi, C. Sekhar, I. Paul, Y.G.S. Prasad, K. Modi, and U. Chakraborty, Effect of fluxing agents on reduction degradation behaviour of hematite pellets, Ironmaking Steelmaking, 43(2016), No. 3, p. 180. doi: 10.1179/1743281215Y.0000000030
|
[18] |
R.R. Wang, J.L. Zhang, Z.J. Liu, X.L. Liu, C.Y. Xu, and Y. Li, Effects of magnesium olivine on the mineral structure and compressive strength of pellets, Ironmaking Steelmaking, 47(2020), No. 2, p. 100. doi: 10.1080/03019233.2018.1482599
|
[19] |
P. Prusti, K. Barik, N. Dash, S.K. Biswal, and B.C. Meikap, Effect of limestone and dolomite flux on the quality of pellets using high LOI iron ore, Powder Technol., 379(2021), p. 154. doi: 10.1016/j.powtec.2020.10.063
|
[20] |
S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, and R. Venugopal, Effect of pellet basicity and MgO content on the quality and microstructure of hematite pellets, Int. J. Miner. Process., 99(2011), No. 1-4, p. 43. doi: 10.1016/j.minpro.2011.03.004
|
[21] |
M. Meraj, S. Pramanik, and J. Pal, Role of MgO and its different minerals on properties of iron ore pellet, Trans. Indian Inst. Met., 69(2016), No. 6, p. 1141. doi: 10.1007/s12666-015-0676-8
|
[22] |
S. Dwarapudi, P.K. Banerjee, P. Chaudhary, et al., Effect of fluxing agents on the swelling behavior of hematite pellets, Int. J. Miner. Process., 126(2014), p. 76. doi: 10.1016/j.minpro.2013.11.012
|
[23] |
P. Prusti and K. Barik, Effect of additives concentration on pelletization of high grade hematite, Mater. Today Proc., 33(2020), p. 5373. doi: 10.1016/j.matpr.2020.03.118
|
[24] |
Y.B. Zhang, X.J. Chen, Z.J. Su, et al., Improving properties of fluxed iron ore pellets with high-silica by regulating liquid phase, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1381. doi: 10.1007/s42243-021-00665-4
|
[25] |
A. Kemppainen, K.I. Ohno, M. Iljana, et al., Softening behaviors of acid and olivine fluxed iron ore pellets in the cohesive zone of a blast furnace, ISIJ Int., 55(2015), No. 10, p. 2039. doi: 10.2355/isijinternational.ISIJINT-2015-023
|
[26] |
R.R. Wang, J.L. Zhang, Z.J. Liu, Y. Li, and C.Y. Xu, Effect of CaO and MgO additives on the compressive strength of pellets: Exploration on the decisive stage during induration, Powder Technol., 390(2021), p. 496. doi: 10.1016/j.powtec.2021.06.001
|
[27] |
A.R. Firth, J.F. Garden, and J.D. Douglas, Phase equilibria and slag formation in the magnetite core of fluxed iron ore pellets, ISIJ Int., 48(2008), No. 11, p. 1485. doi: 10.2355/isijinternational.48.1485
|
[28] |
G.S. Feng, S.L. Wu, H.L. Han, L.W. Ma, W.Z. Jiang, and X.Q. Liu, Sintering characteristics of fluxes and their structure optimization, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 270. doi: 10.1007/s12613-011-0433-x
|
[29] |
F. Kongoli, I. Mcbow, R. Budd, S. Llubani, and A. Yazawa, Effect of oxygen potential and fluxing components on phase relations during sintering of iron ore, J. Min. Metall. Sect. B Metall., 46(2010), No. 2, p. 123. doi: 10.2298/JMMB1002123K
|
[30] |
H.B. Li, D.J. Pinson, P. Zulli, et al., Interaction between mineral phases in a hematite iron ore and fluxing materials during sintering, Metall. Mater. Trans. B, 52(2021), No. 1, p. 267. doi: 10.1007/s11663-020-02010-8
|
[31] |
X. Ding and X.M. Guo, Study of SiO2 involved in the formation process of silico-ferrite of calcium (SFC) by solid-state reactions, Int. J. Miner. Process., 149(2016), p. 69. doi: 10.1016/j.minpro.2016.02.007
|
[32] |
X. Ding, Y.J. Wang, X.M. Guo, S.L. Ran, and C.Y. Ma, Investigation of structural and electrical properties of silico-ferrite of calcium (SFC) in the Fe2O3–CaO–SiO2 system synthesized by solid-state reaction, J. Mater. Sci. Mater. Electron., 30(2019), No. 16, p. 15715. doi: 10.1007/s10854-019-01957-y
|
[33] |
X. Ding and X.M. Guo, The sintering characteristics of mixing SiO2 with calcium ferrite at 1473 K (1200°C), Metall. Mater. Trans. B, 46(2015), No. 4, p. 1742. doi: 10.1007/s11663-015-0348-4
|
[34] |
H.R. Wang, R. Kou, T. Harrington, and K.S. Vecchio, Electromigration effect in Fe–Al diffusion couples with field-assisted sintering, Acta Mater., 186(2020), p. 631. doi: 10.1016/j.actamat.2020.01.008
|
[35] |
J. Wen, H.Y. Sun, T. Jiang, B.J. Chen, F.F. Li, and M.X. Liu, Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 834. doi: 10.1007/s12613-022-2564-7
|
[36] |
W. Wei, H.R. Yue, and X.X. Xue, Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1216. doi: 10.1007/s12613-020-2057-5
|
[37] |
R.R. Wang, J.L. Zhang, Z.J. Liu, X.L. Liu, C.Y. Xu, and Y. Li, Interaction between iron ore and magnesium additives during induration process of pellets, Powder Technol., 361(2020), p. 894. doi: 10.1016/j.powtec.2019.11.006
|
[38] |
Q.J. Gao, Y.S. Shen, G. Wei, X. Jiang, and F.M. Shen, Diffusion behavior and distribution regulation of MgO in MgO-bearing pellets, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1011. doi: 10.1007/s12613-016-1318-9
|
[39] |
H. Fukuyama, K. Hossain, and K. Nagata, Solid-state reaction kinetics of the system CaO–FeO, Metall. Mater. Trans. B, 33(2002), No. 2, p. 257. doi: 10.1007/s11663-002-0010-9
|
[40] |
R. Freer, Self-diffusion and impurity diffusion in oxides, J. Mater. Sci., 15(1980), No. 4, p. 803. doi: 10.1007/BF00552089
|
[41] |
J.W. Jeon, S.M. Jung, and Y. Sasaki, Formation of calcium ferrites under controlled oxygen potentials at 1273 K, ISIJ Int., 50(2010), No. 8, p. 1064. doi: 10.2355/isijinternational.50.1064
|