Cite this article as:

Sara Marijan, and Luka Pavić, Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp.186-196. https://dx.doi.org/10.1007/s12613-023-2744-0
Sara Marijan, and Luka Pavić, Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp.186-196. https://dx.doi.org/10.1007/s12613-023-2744-0
引用本文 PDF XML SpringerLink

Na2O–V2O5–Nb2O5–P2O5玻璃体系介电特性及弛豫过程的固态阻抗谱研究

摘要: 采用固态阻抗谱(SS-IS)研究了添加Nb2O5引起的结构改性对四元混合玻璃成型剂(MGF)体系35Na2O–10V2O5–(55−x)P2O5xNb2O5 (x = 0–40, mol%)的介电性能和弛豫过程的影响。介电参数,包括介电强度和介电损耗,由频率和温度相关的复介电常数数据确定的,揭示了Nb2O5含量对介电强度和介电损耗的显著依赖性。从以磷酸盐为主的玻璃网络(x < 10,区域I)到混合铌酸盐-磷酸盐玻璃网络(10 ≤ x ≤ 20,区域II)的转变导致介电参数增加,这与观察到的直流(DC)电导率趋势相关。在以铌酸盐为主的网络中(x ≥ 25, III区),Nb5+离子的高度极化性质导致介电常数和介电强度进一步增加。这在Nb-40玻璃陶瓷中尤为明显,该玻璃陶瓷含有具有钨青铜结构的Na13Nb35O94晶相,在303 K和10 kHz时,其介电常数最高为61.81,损耗因子最低为0.032。通过模量形式化和复阻抗数据分析的弛豫研究表明,直流电导率和弛豫过程受相同的机制影响,并归因于离子电导率。与电模量虚部M″(ω)的频率依赖性为单峰的玻璃相比,Nb-40玻璃陶瓷在相似的弛豫时间下表现出两种不同的特征。高频峰表示整体离子电导率,而额外的低频峰与晶界效应有关,这通过等效电路(EEC)模型得到了证实。介电常数和电导率谱的标度特征以及电模量验证了时间-温度叠加,并证明了Nb2O5掺入后玻璃结构的组成和改性与时间-温度叠加有很强的相关性。

 

Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system

Abstract: Solid-state impedance spectroscopy (SS-IS) was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former (MGF) system 35Na2O–10V2O5–(55−x)P2O5xNb2O5 (x = 0–40, mol%). The dielectric parameters, including the dielectric strength and dielectric loss, are determined from the frequency and temperature-dependent complex permittivity data, revealing a significant dependence on the Nb2O5 content. The transition from a predominantly phosphate glass network (x < 10, region I) to a mixed niobate–phosphate glass network (10 ≤ x ≤ 20, region II) leads to an increase in the dielectric parameters, which correlates with the observed trend in the direct-current (DC) conductivity. In the predominantly niobate network (x ≥ 25, region III), the highly polarizable nature of Nb5+ ions leads to a further increase in the dielectric permittivity and dielectric strength. This is particularly evident in Nb-40 glass-ceramic, which contains Na13Nb35O94 crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz. The relaxation studies, analyzed through modulus formalism and complex impedance data, show that DC conductivity and relaxation processes are governed by the same mechanism, attributed to ionic conductivity. In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus, M″(ω), Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times. The high-frequency peak indicates bulk ionic conductivity, while the additional low-frequency peak is associated with the grain boundary effect, confirmed by the electrical equivalent circuit (EEC) modelling. The scaling characteristics of permittivity and conductivity spectra, along with the electrical modulus, validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb2O5 incorporation.

 

/

返回文章
返回