留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(5)

数据统计

分享

计量
  • 文章访问数:  364
  • HTML全文浏览量:  160
  • PDF下载量:  24
  • 被引次数: 0
Xiaoyu Shi, Chongxiao Guo, Jiamiao Ni, Songsong Yao, Liqiang Wang, Yue Liu,  and Tongxiang Fan, Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1858-1864. https://doi.org/10.1007/s12613-023-2749-8
Cite this article as:
Xiaoyu Shi, Chongxiao Guo, Jiamiao Ni, Songsong Yao, Liqiang Wang, Yue Liu,  and Tongxiang Fan, Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1858-1864. https://doi.org/10.1007/s12613-023-2749-8
引用本文 PDF XML SpringerLink
研究论文

石墨片表面熔盐合成TiC涂层的生长动力学

文章亮点

  • (1) 系统地研究了Ti含量对石墨表面熔盐生长TiC的影响规律。
  • (2) 建立熔盐中石墨表面碳化物扩散生长模型并进行了验证。
  • (3) 提出了石墨表面熔盐生长碳化物的动力学方程。
  • 碳纤维,石墨等碳基材料具有密度小且在高温下仍具有高机械强度的特点,因而在极端环境和超高温部件中得到广泛应用。然而,碳基材料在极端服役条件下的抗氧化性能较差,通常需要进行表面防护。其中,难熔碳化物因具有极高熔点且与碳基材料化学适配度高等特点而广泛作为碳基材料的表面改性涂层。本文采用熔盐合成(MSS)法在石墨基体表面制备碳化钛(TiC)涂层,研究了熔盐合成过程中的反应动力学。扫描电镜表征(SEM)、X射线衍射(XRD)与理论分析结果表明,TiC涂层的生长动力学由碳(C)在TiC涂层中的扩散速度决定。与此同时,钛粉(Ti)通过液相传质参与反应,且其扩散距离及含量会影响TiC两侧的C浓度梯度进而影响反应速率。此外,通过分析TiC涂层厚度与热处理时间和温度的关系,发现TiC厚度与热处理时间呈抛物线关系,且在700–1300°C的范围内熔盐反应的活化能约为179283 J·mol−1。在此基础上,本文结合扩散动力学模型提出了石墨表面熔盐生长碳化物的动力学方程。上述结果为理解MSS过程中碳化物涂层的生长机制及其可控制备提供了理论依据。
  • Research Article

    Growth kinetics of titanium carbide coating by molten salt synthesis process on graphite sheet surface

    + Author Affiliations
    • The synthesis of carbide coatings on graphite substrates using molten salt synthesis (MSS), has garnered significant interest due to its cost-effective nature. This study investigates the reaction process and growth kinetics involved in MSS, shedding light on key aspects of the process. The involvement of Ti powder through liquid-phase mass transfer is revealed, where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide. Furthermore, the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer, rather than the chemical reaction rate. To analyze the kinetics, the thickness of the carbide layer is measured with respect to heat treatment time and temperature, unveiling a parabolic relationship within the temperature range of 700–1300°C. The estimated activation energy for the reaction is determined to be 179283 J·mol−1. These findings offer valuable insights into the synthesis of carbide coatings via MSS, facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.
    • loading
    • [1]
      P.P. Wang, G.Q. Chen, W.J. Li, et al., Microstructural evolution and thermal conductivity of diamond/Al composites during thermal cycling, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1821. doi: 10.1007/s12613-020-2114-0
      [2]
      H.D. Zhang, J.J. Zhang, Y. Liu, F. Zhang, T.X. Fan, and D. Zhang, Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface, Scripta Mater., 152(2018), p. 84. doi: 10.1016/j.scriptamat.2018.04.021
      [3]
      Z.F. Hu, Y.C. Tong, M. Wang, J.B. Xu, and C. Yang, Rapid and low-cost carbon/carbon composites by using graphite slurry impregnated prepregs, J. Eur. Ceram. Soc., 43(2023), No. 10, p. 4363. doi: 10.1016/j.jeurceramsoc.2023.04.002
      [4]
      S. Chand, Review carbon fibers for composites, J. Mater. Sci., 35(2000), No. 6, p. 1303. doi: 10.1023/A:1004780301489
      [5]
      T.K. Das, P. Ghosh, and N.C. Das, Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: A review, Adv. Compos. Hybrid Mater., 2(2019), No. 2, p. 214. doi: 10.1007/s42114-018-0072-z
      [6]
      S. Zhang and W.E. Lee, Carbon containing castables: Current status and future prospects, Br. Ceram. Trans., 101(2002), No. 1, p. 1. doi: 10.1179/096797801125000410
      [7]
      I.R. de Oliveira, A.R. Studart, V.C. Pandolfelli, and B.A. Menegazzo, Zero-cement refractory castables, Am. Ceram. Soc. Bull., 81(2002), No. 12, p. 27.
      [8]
      M.M. Harussani, S.M. Sapuan, G. Nadeem, T. Rafin, and W. Kirubaanand, Recent applications of carbon-based composites in defence industry: A review, Def. Technol., 18(2022), No. 8, p. 1281. doi: 10.1016/j.dt.2022.03.006
      [9]
      M. Yang, Y. Liu, T.X. Fan, and D. Zhang, Metal-graphene interfaces in epitaxial and bulk systems: A review, Prog. Mater. Sci., 110(2020), art. No. 100652. doi: 10.1016/j.pmatsci.2020.100652
      [10]
      T.X. Fan, Y. Liu, K.M. Yang, J. Song, and D. Zhang, Recent progress on interfacial structure optimization and their influencing mechanism of carbon reinforced metal matrix composites, Acta Metall. Sin., 55(2019), No. 1, p. 16.
      [11]
      J. Song, S.S. Yao, Q. Li, et al., Reorientation mechanisms of graphene coated copper{001} surfaces, Metals, 13(2023), No. 5, art. No. 910. doi: 10.3390/met13050910
      [12]
      C. Verdon, O. Szwedek, S. Jacques, A. Allemand, and Y. Le Petitcorps, Hafnium and silicon carbide multilayer coatings for the protection of carbon composites, Surf. Coat. Technol., 230(2013), p. 124. doi: 10.1016/j.surfcoat.2013.06.022
      [13]
      M.P. Bacos, Carbon–carbon composites: Oxidation behavior and coatings protection, J. Phys. IV, 3(1993), No. C7, p. C7-1895.
      [14]
      C. Friedrich, R. Gadow, and M. Speicher, Protective multilayer coatings for carbon–carbon composites, Surf. Coat. Technol., 151-152(2002), p. 405. doi: 10.1016/S0257-8972(01)01655-3
      [15]
      Z.L. Liu, C.J. Deng, C. Yu, J. Ding, and H.X. Zhu, Improving the anti-oxidation and water wettability of graphite through the design of coating structure for the preparation of Al2O3–SiC–C castables, Ceram. Int., 49(2023), No. 17, p. 29104. doi: 10.1016/j.ceramint.2023.06.186
      [16]
      C.L. Kuang, X. Wang, Z.L. Liu, et al., Nanocrystalline ZrC coated graphite and its effect on mechanical properties and thermal shock resistance of low-carbon Al2O3–C refractories, Ceram. Int., 48(2022), No. 22, p. 33926. doi: 10.1016/j.ceramint.2022.07.341
      [17]
      X. Yang, Q.Z. Huang, Z.A. Su, et al., Resistance to oxidation and ablation of SiC coating on graphite prepared by chemical vapor reaction, Corros. Sci., 75(2013), p. 16. doi: 10.1016/j.corsci.2013.05.009
      [18]
      P. Zhu, P.P. Wang, P.Z. Shao, et al., Research progress in interface modification and thermal conduction behavior of diamond/metal composites, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 200. doi: 10.1007/s12613-021-2339-6
      [19]
      X.Y. Liu, F.Y. Sun, W. Wang, et al., Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2020. doi: 10.1007/s12613-021-2336-9
      [20]
      G.Y. Liu, F.G. Hou, S.L. Peng, X.D. Wang, and B.Z. Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1099. doi: 10.1007/s12613-022-2485-5
      [21]
      Z. Liu, W. Cheng, D.K. Mu, et al., Influences of early-stage C diffusion on growth microstructures in solid-state interface reaction between CVD diamond and sputtered Cr, Mater. Charact., 196(2023), art. No. 112603. doi: 10.1016/j.matchar.2022.112603
      [22]
      H.Q. Wang, L.T. Wang, and H.Y. Zhang, The study of TiC/C composite fiber by chemical vapor deposition, Appl. Mech. Mater., 69(2011), p. 99. doi: 10.4028/www.scientific.net/AMM.69.99
      [23]
      A.P. Rubshtein, A.B. Vladimirov, Y.V. Korkh, Y.S. Ponosov, and S.A. Plotnikov, The composition, structure and surface properties of the titanium–carbon coatings prepared by PVD technique, Surf. Coat. Technol., 309(2017), p. 680. doi: 10.1016/j.surfcoat.2016.11.020
      [24]
      N.Q. Chen, Q. Li, Y.C. Ma, et al., Significant strengthening of copper-based composites using boron nitride nanotubes, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1764. doi: 10.1007/s12613-023-2633-6
      [25]
      Y. Huang, J.M. Ni, X.Y. Shi, et al., Two-step thermal transformation of multilayer graphene using polymeric carbon source assisted by physical vapor deposited copper, Materials, 16(2023), No. 16, art. No. 5603. doi: 10.3390/ma16165603
      [26]
      X. Liu and S. Zhang, Low-temperature preparation of titanium carbide coatings on graphite flakes from molten salts, J. Am. Ceram. Soc., 91(2008), No. 2, p. 667. doi: 10.1111/j.1551-2916.2007.02184.x
      [27]
      X.G. Liu, Z.F. Wang, and S.W. Zhang, Molten salt synthesis and characterization of titanium carbide-coated graphite flakes for refractory castable applications, Int. J. Appl. Ceram. Technol., 8(2011), No. 4, p. 911. doi: 10.1111/j.1744-7402.2010.02529.x
      [28]
      J. Ding, D. Guo, C.J. Deng, H.X. Zhu, and C. Yu, Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts, Appl. Surf. Sci., 407(2017), p. 315. doi: 10.1016/j.apsusc.2017.02.196
      [29]
      S. Masoudifar, M. Bavand-Vandchali, F. Golestani-Fard, and A. Nemati, Molten salt synthesis of a SiC coating on graphite flakes for application in refractory castables, Ceram. Int., 42(2016), No. 10, p. 11951. doi: 10.1016/j.ceramint.2016.04.120
      [30]
      Z.J. Dong, X.K. Li, G.M. Yuan, et al., Fabrication of protective tantalum carbide coatings on carbon fibers using a molten salt method, Appl. Surf. Sci., 254(2008), No. 18, p. 5936. doi: 10.1016/j.apsusc.2008.03.158
      [31]
      S. Suasmoro, F.A.R. Wati, and N. Muhaimin, Ti–Zr coating on graphite through powder immersion reaction-assisted coating (PIRAC) and its oxidation kinetics at T =1000°C, Bull. Mater. Sci., 42(2019), No. 3, art. No. 126. doi: 10.1007/s12034-019-1819-z
      [32]
      L.H. Wang, J.W. Li, L.Y. Gao, et al., Gradient interface formation in Cu–Cr/diamond(Ti) composites prepared by gas pressure infiltration, Vacuum, 206(2022), art. No. 111549. doi: 10.1016/j.vacuum.2022.111549
      [33]
      L. Constantin, L. Fan, M. Pouey, et al., Spontaneous formation of multilayer refractory carbide coatings in a molten salt media, PNAS, 118(2021), No. 18, art. No. e2100663118. doi: 10.1073/pnas.2100663118
      [34]
      F. Behboudi, M.G. Kakroudi, N.P. Vafa, M. Faraji, and S.S. Milani, Molten salt synthesis of in situ TiC coating on graphite flakes, Ceram. Int., 47(2021), No. 6, p. 8161. doi: 10.1016/j.ceramint.2020.11.172
      [35]
      X.L. Xi, M. Feng, L.W. Zhang, and Z.R. Nie, Applications of molten salt and progress of molten salt electrolysis in secondary metal resource recovery, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1599. doi: 10.1007/s12613-020-2175-0
      [36]
      J.T. Wang, X.Q. Kan, Z.L. Liu, et al., Low-temperature and efficient preparation of starfish-like Mo2C/C composites from waste biomass, J. Phys. Chem. Solids, 181(2023), art. No. 111522. doi: 10.1016/j.jpcs.2023.111522
      [37]
      M.E. Straumanis, S.T. Shih, and A.W. Schlechten, The mechanism of deposition of titanium coatings from fused salt baths, J. Electrochem. Soc., 104(1957), No. 1, art. No. 17. doi: 10.1149/1.2428485
      [38]
      A. Miriyev, M. Sinder, and N. Frage, Thermal stability and growth kinetics of the interfacial TiC layer in the Ti alloy/carbon steel system, Acta Mater., 75(2014), p. 348. doi: 10.1016/j.actamat.2014.05.024
      [39]
      M.I. De Barros, D. Rats, L. Vandenbulcke, and G. Farges, Influence of internal diffusion barriers on carbon diffusion in pure titanium and Ti–6Al–4V during diamond deposition, Diam. Relat. Mater., 8(1999), No. 6, p. 1022. doi: 10.1016/S0925-9635(98)00439-7
      [40]
      K. Kōyama, Y. Hashimoto, and S.I. Ōmori, Diffusion of carbon in TiC, Trans. JIM, 16(1975), No. 4, p. 211. doi: 10.2320/matertrans1960.16.211

    Catalog


    • /

      返回文章
      返回