Cite this article as: |
Rui Han, Anning Zhou, Ningning Zhang, Kaiqiang Guo, Mengyan Cheng, Heng Chen, and Cuicui Li, Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 217-230. https://doi.org/10.1007/s12613-023-2753-z |
周安宁 E-mail: psu564@139.com
张宁宁 E-mail: ningningzhang@xust.edu.cn
[1] |
M. Shahabuddin and T. Alam, Gasification of solid fuels (coal, biomass and MSW): Overview, challenges and mitigation strategies, Energies, 15(2022), No. 12, p. 1.
|
[2] |
B. Lv, X.W. Deng, F.S. Jiao, B.B. Dong, C.J. Fang, and B.L. Xing, Enrichment and utilization of residual carbon from coal gasification slag: A review, Process. Saf. Environ. Prot., 171(2023), p. 859. doi: 10.1016/j.psep.2023.01.079
|
[3] |
Y. Yang, J. Xu, Z.Y. Liu, et al., Progress in coal chemical technologies of China, Rev. Chem. Eng., 36(2020), No. 1, p. 21.
|
[4] |
X.D. Liu, Z.W. Jin, Y.H. Jing, et al., Review of the characteristics and graded utilisation of coal gasification slag, Chin. J. Chem. Eng., 35(2021), p. 92. doi: 10.1016/j.cjche.2021.05.007
|
[5] |
A. Mishra, S. Gautam, and T. Sharma, Effect of operating parameters on coal gasification, Int. J. Coal Sci. Technol., 5(2018), No. 2, p. 113. doi: 10.1007/s40789-018-0196-3
|
[6] |
Z.J. Shen, H. Nikolic, L.S. Caudill, and K.L. Liu, A deep insight on the coal ash-to-slag transformation behavior during the entrained flow gasification process, Fuel, 289(2021), art. No. 119953. doi: 10.1016/j.fuel.2020.119953
|
[7] |
X.L. Zhao, C. Zeng, Y.Y. Mao, et al., The surface characteristics and reactivity of residual carbon in coal gasification slag, Energy Fuels, 24(2010), No. 1, p. 91. doi: 10.1021/ef9005065
|
[8] |
B. Lv, X.M. Chai, X.W. Deng, et al. Recovery of residual carbon from coal gasification fine slag by a combined gravity separation-flotation process, J. Environ. Manage., 348(2023), art. No. 119351. doi: 10.1016/j.jenvman.2023.119351
|
[9] |
W.Y. Wang, W. Li, C. Liang, L. Zhou, and Q.Q. Ren, Decarburization and ash characteristics during melting combustion of fine ash from entrained-flow gasifier, Energy, 263(2023), art. No. 125676. doi: 10.1016/j.energy.2022.125676
|
[10] |
T. Wu, M. Gong, E. Lester, F.C. Wang, Z.J. Zhou, and Z.H. Yu, Characterisation of residual carbon from entrained-bed coal water slurry gasifiers, Fuel, 86(2007), No. 7-8, p. 972. doi: 10.1016/j.fuel.2006.09.033
|
[11] |
C.C. Pan, Q.F. Liang, X.L. Guo, Z.H. Dai, H.F. Liu, and X. Gong, Characteristics of different sized slag particles from entrained-flow coal gasification, Energy Fuels, 30(2016), No. 2, p. 1487. doi: 10.1021/acs.energyfuels.5b01326
|
[12] |
K.Z. Fang, D.M. Wang, and Y. Gu, Utilization of gasification coarse slag powder as cement partial replacement: Hydration kinetics characteristics, microstructure and hardening properties, Materials, 16(2023), No. 5, art. No. 1922. doi: 10.3390/ma16051922
|
[13] |
B. Kim, S. Lee, C.M. Chon, and H.S. Choi, Potential of coal gasification slag as an alkali-activated cement, Resour. Recycl., 27(2018), No. 2, p. 38.
|
[14] |
B. Fu, Z.Y. Cheng, D.Z. Wang, and N. Li, Investigation on the utilization of coal gasification slag in Portland cement: Reaction kinetics and microstructure, Constr. Build. Mater., 323(2022), art. No. 126587. doi: 10.1016/j.conbuildmat.2022.126587
|
[15] |
J. Xin, L. Liu, Q. Jiang, P. Yang, H.S. Qu, and G. Xie, Early-age hydration characteristics of modified coal gasification slag–cement–aeolian sand paste backfill, Constr. Build. Mater., 322(2022), art. No. 125936. doi: 10.1016/j.conbuildmat.2021.125936
|
[16] |
N. Yuan, A.J. Zhao, Z.K. Hu, K.Q. Tan, and J.B. Zhang, Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review, Chemosphere, 287(2022), art. No. 132227. doi: 10.1016/j.chemosphere.2021.132227
|
[17] |
Y. Guo, F.H. Guo, L. Zhou, et al., Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: Physiochemical properties, combustion characteristic and kinetic behavior, Fuel, 292(2021), art. No. 120387. doi: 10.1016/j.fuel.2021.120387
|
[18] |
W. Yu, H.L. Zhang, X.B. Wang, et al., Enrichment of residual carbon from coal gasification fine slag by spiral separator, J. Environ. Manage., 315(2022), art. No. 115149. doi: 10.1016/j.jenvman.2022.115149
|
[19] |
S.J. Zhu, X.L. Chen, Y.X. Qian, H.F. Lu, and X. Gong, Separation performance of coal gasification fine ash by hydrocyclone, Proc. Chin. Soc. Elect. Eng., 38(2018), No. 13, p. 3873.
|
[20] |
B. Lv, Z.Y. Zhao, B.B. Dong, X.W. Deng, C.J. Fang, and B. Zhang, Enrichment of residual carbon from coal gasification fine slag in an inflatable-inclined liquid-solid fluidized bed, J. Clean. Prod., 344(2022), art. No. 131132. doi: 10.1016/j.jclepro.2022.131132
|
[21] |
R. Zhang, F.Y. Guo, Y.C. Xia, J.L. Tan, Y.W. Xing, and X.H. Gui, Recovering unburned carbon from gasification fly ash using saline water, Waste Manage., 98(2019), p. 29. doi: 10.1016/j.wasman.2019.08.014
|
[22] |
D.H. Liu, W.D. Wang, Y.N. Tu, et al., Flotation specificity of coal gasification fine slag based on release analysis, J. Clean. Prod., 363(2022), art. No. 132426. doi: 10.1016/j.jclepro.2022.132426
|
[23] |
F.H. Guo, Z.K. Miao, Z.K. Guo, J. Li, Y.X. Zhang, and J.J. Wu, Properties of flotation residual carbon from gasification fine slag, Fuel, 267(2020), art. No. 117043. doi: 10.1016/j.fuel.2020.117043
|
[24] |
F.H. Guo, J.J. Wu, Y.X. Zhang, K. Hou, and L.X. Jiang, Characterization of gasification-coke prepared with coal by-product and a high ratio of low-rank coal addition, Energy Sources Part A : Recovery Util. Environ. Eff., 2020. DOI: 10.1080/15567036.2020.1725691
|
[25] |
F.H. Guo, Y. Guo, Z.K. Guo, et al., Recycling residual carbon from gasification fine slag and its application for preparing slurry fuels, ACS Sustainable Chem. Eng., 8(2020), p. 8830. doi: 10.1021/acssuschemeng.0c02997
|
[26] |
Y.T. Xu and X.L. Chai, Characterization of coal gasification slag-based activated carbon and its potential application in lead removal, Environ. Technol., 39(2018), No. 3, p. 382. doi: 10.1080/09593330.2017.1301569
|
[27] |
Z. Chai, P. Lv, Y.H. Bai, et al., Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: Fabrication, characterization, equilibrium, and kinetic studies, RSC Adv., 12(2022), No. 11, p. 6715. doi: 10.1039/D1RA08419D
|
[28] |
Z.K. Miao, J.J. Wu, Y.J. Niu, Z.K. Guo, F.H. Guo, and Y.X. Zhang, Development of a novel type hierarchical porous composite from coal gasification fine slag for CO2 capture, Chem. Eng. J., 435(2022), art. No. 134909. doi: 10.1016/j.cej.2022.134909
|
[29] |
C. Miao, L.X. Liang, F. Zhang, et al., Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 424. doi: 10.1007/s12613-021-2360-9
|
[30] |
Y.C. Zhang, S.T. Gao, J. He, H.X. Li, C.L. Wu, and Y.H. Bai, PANI-wrapped high-graphitized residual carbon hybrid with boosted electromagnetic wave absorption performance, Synth. Met., 287(2022), art. No. 117077. doi: 10.1016/j.synthmet.2022.117077
|
[31] |
S.X Xiong, W. Zhang, J. Cheng, et al. Preparation of coal gasification fine slag-based supercapacitive carbon using hydrothermal deashing and alkali activation, J. Mater. Sci. Mater. Electron., 35(2024), art. No. 99. doi: 10.1007/s10854-023-11825-5
|
[32] |
B. Xu, M.K. Yang, X.J. Cao, et al., Adsorption behaviors of phenol onto gasification residual cokes with different structural and surface properties, Environ. Prog. Sustainable Energy, 40(2021), No. 4, art. No. e13619. doi: 10.1002/ep.13619
|
[33] |
S.Y. Wu, S. Huang, L.Y. Ji, Y.Q. Wu, and J.S. Gao, Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag, Fuel, 122(2014), p. 67. doi: 10.1016/j.fuel.2014.01.011
|
[34] |
A.N. Zhou, Y. Gao, Z. Li, W. Zhao, N.N. Zhang, and Z.M. Zhang, Composition structure and separation processing of ash and slag during coal gasification, J. Xi’an Univ. Sci. Technol., 41(2021), No. 04, p. 575.
|
[35] |
Q.M. Shi, B.Y. Kou, Q. Sun, and H.L. Jia, Experimental study on pore structure evolution of high volatile bituminous coal with thermal treatment, Case Stud. Therm. Eng., 32(2022), art. No. 101862. doi: 10.1016/j.csite.2022.101862
|
[36] |
G.N. Okolo, R.C. Everson, H.W.J.P. Neomagus, M.J. Roberts, and R. Sakurovs, Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques, Fuel, 141(2015), p. 293. doi: 10.1016/j.fuel.2014.10.046
|
[37] |
J.N. Pan, Y.Q. Zhao, Q.L. Hou, and Y. Jin, Nanoscale pores in coal related to coal rank and deformation structures, Transp. Porous Medium., 107(2015), No. 2, p. 543. doi: 10.1007/s11242-015-0453-5
|
[38] |
Y.B. Yao and D.M. Liu, Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals, Fuel, 95(2012), p. 152. doi: 10.1016/j.fuel.2011.12.039
|
[39] |
Z.S. Liu, D.M. Liu, Y.D. Cai, Y.B. Yao, Z.J. Pan, and Y.F. Zhou, Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review, Int. J. Coal Geol., 218(2020), art. No. 103261. doi: 10.1016/j.coal.2019.103261
|
[40] |
G.F. Dai, S.J. Zheng, X.B. Wang, et al., Combustibility analysis of high-carbon fine slags from an entrained flow gasifier, J. Environ. Manage., 271(2020), art. No. 111009. doi: 10.1016/j.jenvman.2020.111009
|
[41] |
Z.K. Miao, L.Q. Chen, K.N. Chen, X.X. Zhang, Y.X. Zhang, and J.J. Wu, Physical properties and microstructures of residual carbon and slag particles present in fine slag from entrained-flow coal gasification, Adv. Powder Technol., 31(2020), No. 9, p. 3781. doi: 10.1016/j.apt.2020.07.019
|
[42] |
Y. Gao, W. Zhao, A.N. Zhou, et al., Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag, J. Fuel Chem. Technol., 50(2022), No. 8, p. 954. doi: 10.1016/S1872-5813(22)60007-0
|
[43] |
M.M. Maroto-Valer, D.N. Taulbee, and J.C. Hower, Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation, Energy Fuels, 13(1999), No. 4, p. 947. doi: 10.1021/ef990029s
|
[44] |
Q.Y. Wang, Y.H. Bai, P. Lv, et al. Separation and characterization of different types of residual carbon in fine slag from entrained flow coal gasification, Fuel, 339 (2023), art. No. 127437. doi: 10.1016/j.fuel.2023.127437
|
[45] |
N. Malumbazo, N.J. Wagner, J.R. Bunt, D. Van Niekerk, and H. Assumption, Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit, Fuel Process. Technol., 92(2011), No. 4, p. 743. doi: 10.1016/j.fuproc.2010.09.009
|
[46] |
N. Malumbazo, N.J. Wagner, and J.R. Bunt, The petrographic determination of reactivity differences of two South African inertinite-rich lump coals, J. Anal. Appl. Pyrolysis, 93(2012), p. 139. doi: 10.1016/j.jaap.2011.10.008
|
[47] |
N. Malumbazo, N.J. Wagner, and J.R. Bunt, The impact of particle size and maceral segregation on char formation in a packed bed combustion unit, Fuel, 111(2013), p. 350. doi: 10.1016/j.fuel.2013.03.056
|
[48] |
N.J. Wagner, R.H. Matjie, J.H. Slaghuis, and J.H.P. van Heerden, Characterization of unburned carbon present in coarse gasification ash, Fuel, 87(2008), No. 6, p. 683. doi: 10.1016/j.fuel.2007.05.022
|
[49] |
Y. Shen, G.H. Lu, Y.H. Bai, et al., Structural features of residue carbon formed by gasification of different coal macerals, Fuel, 320(2022), art. No. 123918. doi: 10.1016/j.fuel.2022.123918
|
[50] |
F.H. Guo, X. Zhao, Y. Guo, Y.X. Zhang, and J.J. Wu, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon, Colloids Surf. A: Physicochem. Eng. Aspects, 585(2020), art. No. 124148. doi: 10.1016/j.colsurfa.2019.124148
|
[51] |
Y.C. Zhang, H.X. Li, and C.L. Wu, Study on distribution, chemical states and binding energy shifts of elements on the surface of gasification fine ash, Res. Chem. Intermed., 45(2019), No. 7, p. 3855. doi: 10.1007/s11164-019-03824-1
|
[52] |
Y.C. Zhang, H.X. Li, S.T. Gao, Y. Geng, and C.L. Wu, A study on the chemical state of carbon present in fine ash from gasification, Asia Pac. J. Chem. Eng., 14(2019), No. 4, art. No. e2336. doi: 10.1002/apj.2336
|
[53] |
J.W. Li, S.B. Fan, X.Y. Zhang, et al., Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash, Energy, 251(2022), art. No. 123930. doi: 10.1016/j.energy.2022.123930
|
[54] |
D.P. Lü, Y.H. Bai, J.F. Wang, et al., Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification, J. Fuel Chem. Technol., 49(2021), No. 2, p. 129. doi: 10.1016/S1872-5813(21)60011-7
|
[55] |
Y.J. Niu, J. Xu, Z.K. Miao, F.H. Guo, Y.X. Zhang, and J.J. Wu, Distribution modes of residual carbon and ash in coal gasification fine slag and its feasibility analysis as particle electrodes, Chemosphere, 303(2022), art. No. 135159. doi: 10.1016/j.chemosphere.2022.135159
|
[56] |
Z.H. Xue, L.P. Dong, X.T. Fan, et al., Physical and chemical properties of coal gasification fine slag and its carbon products by hydrophobic-hydrophilic separation, ACS Omega, 7(2022), No. 19, p. 16484. doi: 10.1021/acsomega.2c00484
|
[57] |
M.J. Du, J.J. Huang, Z.Y. Liu, et al., Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment, Fuel, 224(2018), p. 178. doi: 10.1016/j.fuel.2018.03.073
|
[58] |
W. Yu, L.J. Liu, B. Gao, L.N. Wang, and S.L. Yue, Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis, J. Fuel Chem. Technol., 50(2022), No. 8, p. 966.
|
[59] |
Z.J. Shen, J.L. Xu, H.F. Liu, and Q.F. Liang, Modeling study for the effect of particle size on char gasification with CO2, AlChE. J., 63(2017), No. 2, p. 716. doi: 10.1002/aic.15417
|
[60] |
H. Han, A. Liu, C.L. Wang, R.Q. Yang, S. Li, and H.F. Wang, Flotation kinetics performance of different coal size fractions with nanobubbles, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1502. doi: 10.1007/s12613-021-2280-8
|
[61] |
Y. Guo, C.F. Ma, Y.X. Zhang, et al., Comparative study on the structure characteristics, combustion reactivity, and potential environmental impacts of coal gasification fine slag with different particle size fractions, Fuel, 311(2022), art. No. 122493. doi: 10.1016/j.fuel.2021.122493
|
[62] |
M. Cheng, X.H. Fu, and J.Q. Kang, Compressibility of different pore and fracture structures and its relationship with heterogeneity and minerals in low-rank coal reservoirs: An experimental study based on nuclear magnetic resonance and micro-CT, Energy Fuels, 34(2020), No. 9, p. 10894. doi: 10.1021/acs.energyfuels.0c02119
|
[63] |
X.H. Shi, J.N. Pan, Q.L. Hou, et al., Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory, Fuel, 212(2018), p. 162. doi: 10.1016/j.fuel.2017.09.115
|
[64] |
J.N. Pan, Q.H. Niu, K. Wang, X.H. Shi, and M. Li, The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption, Microporous Mesoporous Mater., 224(2016), p. 245. doi: 10.1016/j.micromeso.2015.11.057
|
[65] |
A.P. Radlinski, M. Mastalerz, A.L. Hinde, et al., Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal, Int. J. Coal Geol., 59(2004), No. 3-4, p. 245. doi: 10.1016/j.coal.2004.03.002
|
[66] |
B. Vaziri Hassas, H. Caliskan, O. Guven, F. Karakas, M. Cinar, and M.S. Celik, Effect of roughness and shape factor on flotation characteristics of glass beads, Colloids Surf. A: Physicochem. Eng. Aspects, 492(2016), p. 88. doi: 10.1016/j.colsurfa.2015.12.025
|
[67] |
N.N. Zhang, T. Pang, R. Han, Z.L. Zhu, and Z. Li, Insight into anionic and cationic flotation discrepancy of quartz with altered surface roughness by acid etching, J. Mol. Liq., 381(2023), art. No. 121816. doi: 10.1016/j.molliq.2023.121816
|
[68] |
Z.L. Zhu, Z. Li, W.Z. Yin, et al., Effect of surface roughness on the flotation separation of hematite from fine quartz, J. Ind. Eng. Chem., 109(2022), p. 431. doi: 10.1016/j.jiec.2022.02.029
|
[69] |
L. Ren, Y. Gong, Q.H. Guo, and G.S. Yu, Enhanced flotation of coal gasification fine slag based on ultrasonic pretreatment pulp and composite collector, Powder Technol., 424(2023), art. No. 118530. doi: 10.1016/j.powtec.2023.118530
|
[70] |
W.D. Wang, D.H. Liu, Y.N. Tu, L.Z. Jin, and H. Wang, Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation, Fuel, 278(2020), art. No. 118195. doi: 10.1016/j.fuel.2020.118195
|
[71] |
N.N. Zhang, M.Y. Cheng, R. Han, et al., Innovative flotation separation considering pores blocking to facilitate residual carbon recovery from coal gasification fine slag, Sep. Purif. Technol., 310(2023), art. No. 123254. doi: 10.1016/j.seppur.2023.123254
|
[72] |
R. Han, N.N. Zhang, A.N. Zhou, et al., Enhancing flotation recovery of residual carbon from gasification waste by mixing hydrophobic powder with diesel as collector, Particuology, 89(2024), p. 211-217. doi: 10.1016/j.partic.2023.11.011
|
[73] |
R. Zhang, H.S. Huang, J.C. Liu, et al., Improving flotation decarbonization efficiency of coal gasification fly ash by mechanically breaking pore: An experimental and molecular dynamics simulation study, Colloids Surf. A: Physicochem. Eng. Aspects, 663(2023), art. No. 131074. doi: 10.1016/j.colsurfa.2023.131074
|
[74] |
D. Shi, J.B. Zhang, H.Q. Li, et al., Insight into the mechanism of gasification fine slag enhanced flotation with selective dispersion flocculation, Fuel, 336(2023), art. No. 127134. doi: 10.1016/j.fuel.2022.127134
|
[75] |
S. Liu, J.L. Wei, X.T. Chen, W.D. Ai, and C.D. Wei, Low-cost route for preparing carbon–silica composite mesoporous material from coal gasification slag: Synthesis, characterization and application in purifying dye wastewater, Arab. J. Sci. Eng., 45(2020), No. 6, p. 4647. doi: 10.1007/s13369-020-04383-z
|
[76] |
Y.H. Wu, K. Xue, Q.L. Ma, et al., Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag, Microporous Mesoporous Mater., 312(2021), art. No. 110742. doi: 10.1016/j.micromeso.2020.110742
|
[77] |
Y. Chen, I. Kone, Y. Gong, et al., Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries, Carbon, 152(2019), p. 325. doi: 10.1016/j.carbon.2019.06.026
|
[78] |
L.J. Kennedy, T. Ratnaji, N. Konikkara, and J.J. Vijaya, Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte, J. Cleaner Prod., 197(2018), p. 930. doi: 10.1016/j.jclepro.2018.06.244
|
[79] |
Q.H. Guo, Y.C. Huang, Y. Gong, X.D. Zhuang, A. Richter, and G.S. Yu, Recovered carbon from coal gasification fine slag as electrocatalyst for oxygen reduction reaction and zinc–air battery, Energy Technol., 9(2021), No. 4, art. No. 2000890.
|
[80] |
R. Han, A.N. Zhou, N.N. Zhang, and Z. Li, A review of kinetic studies on evaporative dehydration of lignite, Fuel, 329(2022), art. No. 125445. doi: 10.1016/j.fuel.2022.125445
|
[81] |
X. Zhao, F.H. Guo, Y.X. Zhang, and J.J. Wu, Water distribution and adsorption behaviors of two typical coal gasification fine slags from Ningxia Region, Colloids Surf. A: Physicochem. Eng. Aspects, 625(2021), art. No. 126935. doi: 10.1016/j.colsurfa.2021.126935
|
[82] |
V.L. Snoeyink and W.J. Weber, The surface chemistry of active carbon; a discussion of structure and surface functional groups, Environ. Sci. Technol., 1(1967), No. 3, p. 228. doi: 10.1021/es60003a003
|
[83] |
N.N. Zhang, T. Pang, R. Han, et al., Interactions between bubble and particles of key minerals of diasporic bauxite through the extended DLVO theory, Int. J. Min. Sci. Technol., 32(2022), No. 1, p. 201. doi: 10.1016/j.ijmst.2021.11.002
|
[84] |
Z.X. Wan, L.Y. Duan, X.D. Hu, et al., Removal of mercury from flue gas using coal gasification slag, Fuel Process. Technol., 231(2022), art. No. 107258. doi: 10.1016/j.fuproc.2022.107258
|
[85] |
J.W. Li, Z.C. Chen, L.K. Li, et al., Study on pore and chemical structure characteristics of atmospheric circulating fluidized bed coal gasification fly ash, J. Cleaner Prod., 308(2021), art. No. 127395. doi: 10.1016/j.jclepro.2021.127395
|
[86] |
Y. Zhang, H. Li, and C. Wu, Study on distribution, chemical states and binding energy shifts of elements on the surface of gasification fine ash, Res. Chem. Intermed., 45(2019), p. 3855.
|
[87] |
G.X. Fan, M.Y. Zhang, W.J. Peng, et al., Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes, J. Cleaner Prod., 286(2021), art. No. 124943. doi: 10.1016/j.jclepro.2020.124943
|
[88] |
D. Shi, J.B. Zhang, X.J. Hou, et al., Occurrence mode and molecular structure model of unburned carbon in coal gasification fine slags, Fuel, 323(2022), art. No. 124364. doi: 10.1016/j.fuel.2022.124364
|
[89] |
S.X. Xiong, N.N. Yang, X.Q. Wang, et al., Preparation of hierarchical porous activated carbons for high performance supercapacitors from coal gasification fine slag, J. Mater. Sci. Mater. Electron., 33(2022), No. 18, p. 14722. doi: 10.1007/s10854-022-08392-6
|
[90] |
Z.H. Xue, F. Gao, L.P. Dong, et al. Promotion of hydrophobic-hydrophilic separation of coal gasification fine slag through ultrasonic pre-treatment, J. Environ. Chem. Eng., 11 (2023), art. No. 110653. doi: 10.1016/j.jece.2023.110653
|
[91] |
X.D. Ge, Surface properties analysis of coal gasification coal cinder and flotation extraction research, China Coal, 45(2019), No. 1, p. 107.
|
[92] |
C.C. Pan, X. Liu, W. Huo, X.L. Guo, and X. Gong, Functional groups and pyrolysis characteristics of fine gasification ashes and raw coals, CIESC J., 66(2015), No. 4, p. 1449.
|
[93] |
S.J. Zhu, L. Xu, L. Yang, X.L. Chen, and H.F. Lu, Effect of physicochemical properties of coal gasification fine ash on its wettability, Adv. Powder Technol., 32(2021), No. 7, p. 2123. doi: 10.1016/j.apt.2021.04.020
|
[94] |
Z.H. Xue, L.P. Dong, H.P. Li, et al., Study on the mechanism of flotation of coal gasification fine slag reinforced with naphthenic acids, Fuel, 324(2022), art. No. 124557. doi: 10.1016/j.fuel.2022.124557
|
[95] |
H.S. Hu, M. Li, L.L. Li, and X.X. Tao, Improving bubble-particle attachment during the flotation of low rank coal by surface modification, Int. J. Min. Sci. Technol., 30(2020), No. 2, p. 217. doi: 10.1016/j.ijmst.2019.04.001
|
[96] |
Y.Y. Liu and J. Wilcox, Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons, Environ. Sci. Technol., 46(2012), No. 3, p. 1940. doi: 10.1021/es204071g
|
[97] |
C.L. Lu, S.P. Xu, M. Wang, L.G. Wei, S.Q. Liu, and C.H. Liu, Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke, Carbon, 45(2007), No. 1, p. 206. doi: 10.1016/j.carbon.2006.10.003
|
[98] |
Z.K. Miao, G.F. Qiu, X. Zhao, F.H. Guo, Y.X. Zhang, and J.J. Wu, Influence of pre-oxidization on the characterizations of coal gasification fine slag-derived activated carbons for CO2 capture, J. CO 2 Util., 54(2021), art. No. 101754.
|
[99] |
B. Petrovic, M. Gorbounov, and S. Masoudi Soltani, Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous Mesoporous Mater., 312(2021), art. No. 110751. doi: 10.1016/j.micromeso.2020.110751
|
[100] |
J.P. Zhang, J. Zuo, W.D. Ai, et al., Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture, Appl. Surf. Sci., 537(2021), art. No. 147938. doi: 10.1016/j.apsusc.2020.147938
|
[101] |
S.T. Gao, C.L. Wu, Y.C. Zhang, and H.X. Li, Dielectric regulation of high-graphitized fine ash wrapped cube-like ZnSnO3 composites with boosted microwave absorption performance, Ceram. Int., 47(2021), No. 4, p. 4994. doi: 10.1016/j.ceramint.2020.10.074
|
[102] |
S.T. Gao, Y.C. Zhang, H.X. Li, J. He, H. Xu, and C.L. Wu, The microwave absorption properties of residual carbon from coal gasification fine slag, Fuel, 290(2021), art. No. 120050. doi: 10.1016/j.fuel.2020.120050
|
[103] |
Y.K. Xiong, L.J. Jin, H. Yang, Y. Li, and H.Q. Hu, Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation, Fuel Process. Technol., 210(2020), art. No. 106563. doi: 10.1016/j.fuproc.2020.106563
|
[104] |
J.T. Wei, Q.H. Guo, X.D. Song, et al., Effect of hydrothermal carbonization temperature on reactivity and synergy of co-gasification of biomass hydrochar and coal, Appl. Therm. Eng., 183(2021), art. No. 116232. doi: 10.1016/j.applthermaleng.2020.116232
|
[105] |
A. Coccato, J. Jehlicka, L. Moens, and P. Vandenabeele, Raman spectroscopy for the investigation of carbon-based black pigments, J. Raman Spectrosc., 46(2015), No. 10, p. 1003. doi: 10.1002/jrs.4715
|
[106] |
J.Q. Yu, Q.H. Guo, L. Ding, Y. Gong, and G.S. Yu, Studying effects of solid structure evolution on gasification reactivity of coal chars by in situ Raman spectroscopy, Fuel, 270(2020), art. No. 117603. doi: 10.1016/j.fuel.2020.117603
|
[107] |
N. Zhang, G.W. Wang, J.L. Zhang, et al., Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 93(2020), No. 3, p. 1125. doi: 10.1016/j.joei.2019.10.006
|
[108] |
S. Huang, S.Y. Wu, Y.Q. Wu, and J.S. Gao, Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash, Energy Convers. Manage., 136(2017), p. 108. doi: 10.1016/j.enconman.2016.12.091
|
[109] |
H.D. Wu, F.H. Shao, P. Lü, et al., Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification, J. Fuel Chem. Technol., 50(2022), No. 5, p. 513.
|
[110] |
S.W. Wei, L.Y. Zhang, Y.L. Qiu, D.F. Ding, and H.L. Liu, Study on the relationship between graphite crystal structure and flotation rate, Metal Mine, 11(2021), p. 104.
|
[111] |
C.D. Ma, X.T. Li, J.Q. Lyu, et al., Study on characteristics of coal gasification fine slag–coal water slurry slurrying, combustion, and ash fusion, Fuel, 332(2023), art. No. 126039. doi: 10.1016/j.fuel.2022.126039
|
[112] |
F.H. Guo, H.G. Wang, H.C. Li, et al., Waste coal gasification fine slag disposal mode via a promising “efficient non-evaporative dewatering & mixed combustion”: A comprehensive theoretical analysis of energy recovery and environmental benefits, Fuel, 339(2023), art. No. 126924. doi: 10.1016/j.fuel.2022.126924
|
[113] |
X. Zhao, K.J. Liu, F.H. Guo, Y.X. Zhang, and J.J. Wu, Catalytic graphitization of residual carbon from gasification fine slag with ferric chloride as catalyst, Colloids Surf. A: Physicochem. Eng. Aspects, 636(2022), art. No. 128142. doi: 10.1016/j.colsurfa.2021.128142
|
[114] |
Q.H. Guo, H. Li, S.M. Wang, Y. Gong, L. Ren, and G.S. Yu, Experimental study on preparation of oxygen reduction catalyst from coal gasification residual carbon, Chem. Eng. J., 446(2022), art. No. 137256. doi: 10.1016/j.cej.2022.137256
|
[115] |
S.M. Wang, H. Li, Y. Gong, Q.H. Guo, and G.S. Yu, Investigation of the heteroatom doping effect on gasification fine slag residue carbon oxygen reduction reaction catalysts, SSRN Electron. J., (2022), art. No. 2201425.
|
[116] |
J. He, S.T. Gao, Y.C. Zhang, and H.X. Li, Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity, J. Alloys Compd., 874(2021), art. No. 159878. doi: 10.1016/j.jallcom.2021.159878
|