Cite this article as:

Qipeng Bao, Lei Guo, Hong Yong Sohn, Haibin Zuo, Feng Liu, Yongliang Gao, and Zhancheng Guo, New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.473-484. https://dx.doi.org/10.1007/s12613-023-2756-9
Qipeng Bao, Lei Guo, Hong Yong Sohn, Haibin Zuo, Feng Liu, Yongliang Gao, and Zhancheng Guo, New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.473-484. https://dx.doi.org/10.1007/s12613-023-2756-9
引用本文 PDF XML SpringerLink

闪速还原熔分–磁选处理硼铁精矿的新方法

摘要: 硼是一种重要的工业原料,硼资源常常与铁、镁等矿相伴生,而且矿相之间以细密的形式掺杂在一起,很难通过常规的选矿工艺实现不同矿相的解离和分离。本文提出一种闪速还原熔分–磁选处理硼铁精矿的新方法,该方法可以实现矿粉在颗粒尺度的渣铁熔分,结合破碎–磁选操作获得金属铁粉和富硼渣。分离出的渣相中B2O3含量可达18%以上,而金属铁中B含量低于0.03%。本文分别对一步法和两步法闪速还原熔分开展了研究,探究了矿粉粒度、温度等因素对还原和熔分过程的影响规律。并对闪速还原熔分过程中矿粉颗粒的矿相转变和形貌演变规律进行了深度解析。

 

New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation

Abstract: Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize, which makes it difficult to separate the mineral phases through conventional beneficiation. This study proposed a new treatment called flash reduction–melting separation (FRMS) for boron-bearing iron concentrates. In this method, the concentrates were first flash-reduced at the temperature under which the particles melt, and the slag and the reduced iron phases disengaged at the particle scale. Good reduction and melting effects were achieved above 1550°C. The B2O3 content in the separated slag was over 18wt%, and the B content in the iron was less than 0.03wt%. The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and temperature on the reduction and melting steps with and without pre-reducing the raw concentrate. The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.

 

/

返回文章
返回