留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(5)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  555
  • HTML全文浏览量:  232
  • PDF下载量:  15
  • 被引次数: 0
Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu,  and Xuemin Wang, Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1849-1857. https://doi.org/10.1007/s12613-023-2757-8
Cite this article as:
Xiangyu Xu, Lu Zhang, Zifei Wang, Qianren Tian, Jianxun Fu,  and Xuemin Wang, Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1849-1857. https://doi.org/10.1007/s12613-023-2757-8
引用本文 PDF XML SpringerLink
研究论文

含硫钢凝固过程中MnTe夹杂物的临界析出行为


  • 通讯作者:

    付建勋    E-mail: fujianxun@shu.edu.cn

文章亮点

  • (1) 解析了MnS/MnTe半共格界面并确定了二者取向关系。
  • (2) 阐明了MnTe临界析出优先位置并提出了MnTe临界析出相变过程。
  • (3) 建立了碲化锰临界析出时钢中碲含量经验计算公式。
  • 碲处理技术是硫化物改质的有效方法,碲在含硫钢中通常以在硫化物中固溶和MnTe析出的两种形式存在。然而,MnTe析出会降低材料的热塑性和耐蚀性。因此,碲处理技术在实际工业应用中,大多情况下并不期望MnTe析出。解析碲化锰临界析出行为是碲处理技术推广应用涉及的关键科学问题。本文通过扫描电子显微镜、透射电子显微镜、机器学习和第一性原理计算研究了MnTe夹杂物的临界析出行为。发现MnTe夹杂物优先在球状硫化物的容器口以及棒状硫化物晶界与钢基体界面交合处析出,形成MnS–MnTe复合夹杂物。MnS–MnTe复合夹杂物的相界面为半共格界面,界面处存在NaCl结构周期性变化的成分过渡带,以维持半共格界面。随温度降低,MnTe夹杂物在含硫钢中的临界析出行为可划分为三个阶段:第一阶段,Mn(S,Te)在凝固过程中析出;第二阶段,由于Te在MnS中的固溶度降低,NaCl结构的MnTe从Mn(S,Te)中析出,形成MnS–MnTe复合夹杂物;第三阶段,MnS–MnTe复合夹杂物中的MnTe由NaCl结构转变为六方NiAs结构。含硫钢中MnTe夹杂物的临界析出行为与MnS的析出温度有关。随着MnS析出温度升高,临界Te/S质量比降低。因此,含硫钢工业生产中碲的经济添加量,应按照MnS析出温度和S含量两个方面进行确定。
  • Research Article

    Critical precipitation behavior of MnTe inclusions in resulfurized steels during solidification

    + Author Affiliations
    • Te treatment is an effective method for modifying sulfide inclusions, and MnTe precipitation has an important effect on thermal brittleness and steel corrosion resistance. In most actual industrial applications of Te treatment, MnTe precipitation is unexpected. The critical precipitation behavior of MnTe inclusions was investigated through scanning electron microscopy, transmission electron microscopy, machine learning, and first-principles calculation. MnTe preferentially precipitated at the container mouth for sphere-like sulfides and at the interface between MnS grain boundaries and steel matrix for rod-like sulfides. The MnS/MnTe interface was semicoherent. A composition transition zone with a rock-salt structure exhibiting periodic changes existed to maintain the semicoherent interface. The critical precipitation behavior of MnTe inclusions in resulfurized steels involved three stages at varying temperatures. First, Mn(S,Te) precipitated during solidification. Second, MnTe with a rock-salt structure precipitated from Mn(S,Te). Third, MnTe with a hexagonal NiAs structure transformed from the rock-salt structure. The solubility of Te in MnS decreased with decreasing temperature. The critical precipitation behavior of MnTe inclusions in resulfurized steels was related to the MnS precipitation temperature. With the increase in MnS precipitation temperature, the critical Te/S weight ratio decreased. In consideration of the cost-effectiveness of Te addition for industrial production, the Te content in resulfurized steels should be controlled in accordance with MnS precipitation temperature and S content.
    • loading
    • [1]
      X.Y. Xu, T.F. Chung, S.H. Hu, et al., Effect of tin microalloying on the microstructure of low-carbon free-machining steels, J. Mater. Res. Technol., 20(2022), p. 1172. doi: 10.1016/j.jmrt.2022.07.153
      [2]
      Q.R. Tian, X.Y. Xu, J. Li, et al., Formation mechanism of band delta-ferrite in 416 stainless steel and its relationship with MnS and M23C6, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2355. doi: 10.1007/s11663-021-02181-y
      [3]
      J.B. Xie, T. Fan, H. Sun, Z.Q. Zeng, and J.X. Fu, Enhancement of impurity, machinability and mechanical properties in Te-treated 0Cr18Ni9 steel, Met. Mater. Int., 27(2021), No. 6, p. 1416. doi: 10.1007/s12540-019-00545-3
      [4]
      Z.Q. Liu, Y. Zhang, W. Shi, and S. Xiang, Layer-by-layer analysis of gradient corrosion behavior of ultrasonic rolling-processed 20CrMnTi steel, Mater. Lett., 334(2023), art. No. 133740. doi: 10.1016/j.matlet.2022.133740
      [5]
      N.F. Liu, X.Y. Xu, Z.F. Wang, et al., Effect of tellurium on sulfide inclusion, microstructure and properties of industrial bars of a medium-carbon microalloyed steel, J. Mater. Res. Technol., 24(2023), p. 2226. doi: 10.1016/j.jmrt.2023.03.136
      [6]
      J.E. Desaigues, C. Lescalier, A. Bomont-Arzur, D. Dudzinski, and O. Bomont, Experimental study of Built-Up Layer formation during machining of high strength free-cutting steel, J. Mater. Process. Technol., 236(2016), p. 204. doi: 10.1016/j.jmatprotec.2016.05.016
      [7]
      M. Wu, W. Fang, R.M. Chen, et al., Mechanical anisotropy and local ductility in transverse tensile deformation in hot rolled steels: The role of MnS inclusions, Mater. Sci. Eng. A, 744(2019), p. 324. doi: 10.1016/j.msea.2018.12.026
      [8]
      P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
      [9]
      Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
      [10]
      H.H. Zhang, L.H. Wan, M.J. Long, et al., Quantitative investigation on the evolution of Ti(C x, N1− x) in ultra-high-strength steel slab during TSCR process: Precipitation and redissolution, Metall. Mater. Trans. B, 54(2023), No. 5, p. 2492. doi: 10.1007/s11663-023-02850-0
      [11]
      X.Y. Xu, Q.R. Tian, T. Hu, D.P. Ji, Q. Qian, and J.X. Fu, Tellurium treatment for the modification of sulfide inclusions and corresponding industrial applications in special steels: A review, Steel Res. Int., 94(2023), No. 5, art.No.2200375. doi: 10.1002/srin.202200375
      [12]
      G. Gupta, D.G.C. Robertson, and M.E. Schlesinger, Tellurium thermodynamics in austenitic iron, Can. Metall. Q., 44(2005), No. 3, p. 351. doi: 10.1179/cmq.2005.44.3.351
      [13]
      K. Hoffmann, K.H. Sauer, and H.J. Grabke, Untersuchungen zur löslichkeit, korngrenzensegregation und chemisch-analytischen bestimmung des tellurs im eisen, Steel Res., 59(1988), No. 4, p. 139. doi: 10.1002/srin.198801620
      [14]
      L.C. Zheng, A. Malfliet, P. Wollants, B. Blanpain, and M.X. Guo, Effect of surfactant Te on the formation of MnS inclusions in steel, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2447. doi: 10.1007/s11663-017-1050-5
      [15]
      P. Shen, H. Zhang, X.Y. Xu, Q.K. Yang, and J.X. Fu, Study on the high-temperature evolution and formation mechanism of inclusions in Te-treated resulfurized special steel, Steel Res. Int., 92(2021), No. 11, art.No.2100235. doi: 10.1002/srin.202100235
      [16]
      S. Zhang, F. Wang, S.F. Yang, J.H. Liu, and J.S. Li, Sulfide transformation with tellurium treatment for Y15 free-cutting steel, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2284. doi: 10.1007/s11663-019-01627-8
      [17]
      Q. Huang, Y. Ren, Y. Luo, S. Ji, and L.F. Zhang, Deformation of MnS–MnTe inclusions in a sulfur-containing free-cutting steel with tellurium treatment, Metall. Mater. Trans. B, 54(2023), No. 1, p. 370. doi: 10.1007/s11663-022-02698-w
      [18]
      P. Shen, Q.K. Yang, D. Zhang, S.F. Yang, and J.X. Fu, The effect of tellurium on the formation of MnTe-MnS composite inclusions in non-quenched and tempered steel, Metals, 8(2018), No. 8, art. No. 639. doi: 10.3390/met8080639
      [19]
      T. Katoh, S. Abeyama, A. Kimura, and S. Nakamura, A study on resulfurized free-machining steel containing a small amount of tellurium, Denki Seiko, 53(1982), No. 3, p. 195. doi: 10.4262/denkiseiko.53.195
      [20]
      S.F. Yang, Z.C. Che, C. Liu, et al., Mechanism of the dual effect of Te addition on the localised corrosion resistance of 15–5PH stainless steel, Corros. Sci., 212(2023), art. No. 110970. doi: 10.1016/j.corsci.2023.110970
      [21]
      T.Y. Tien, L.H. Van Vlack, and R.J. Martin, The System MnTe–MnS : Progress Report, The University of Michigan, New York, 1967.
      [22]
      P. Shen, L. Zhou, Q.K. Yang, Z.Q. Zeng, K.N. Ai, and J.X. Fu, Modification of MnS inclusion by tellurium in 38MnVS6 micro-alloyed steel, Metall. Res. Technol., 117(2020), No. 6, art. No. 615. doi: 10.1051/metal/2020066
      [23]
      X.Y. Xu, Y.T. Li, Z.F. Wang, et al., Tellurium doping in MnS inclusions and corresponding modification effect: Experimental and first-principles study, Metall. Mater. Trans. A, 54(2023), No. 11, p. 4558. doi: 10.1007/s11661-023-07189-4
      [24]
      G. Xu, J.S. He, Z.M. Lü, M. Li, and J.W. Xu, Prediction of mechanical properties for deep drawing steel by deep learning, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 156. doi: 10.1007/s12613-022-2547-8
      [25]
      X.J. Yang, J.H. Jia, Q. Li, et al., Stress-assisted corrosion mechanism study of 3Ni steel based on gradient boosting decision tree machining-learning method, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2661-2
      [26]
      G.F. Pan, F.Y. Wang, C.L. Shang, et al., Advances in machine learning- and artificial intelligence-assisted material design of steels, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1003. doi: 10.1007/s12613-022-2595-0
      [27]
      R.H. Zhang and J. Yang, State of the art in applications of machine learning in steelmaking process modeling, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2055. doi: 10.1007/s12613-023-2646-1
      [28]
      J. Kuang and Z. Long, Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms, Int. J. Miner. Metall. Mater., (2024). https://doi.org/10.1007/s12613-023-2679-5
      [29]
      Z.C. Xin, J.S. Zhang, Y. Jin, J. Zheng, and Q. Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 335. doi: 10.1007/s12613-021-2409-9
      [30]
      F.F. Li, A.R. He, Y. Song, et al., Deep learning for predictive mechanical properties of hot-rolled strip in complex manufacturing systems, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1093. doi: 10.1007/s12613-022-2536-y
      [31]
      F. Pedregosa, G. Varoquaux, A. Gramfort, et al., Scikit-learn: Machine learning in Python, J. Mach. Learn. Res., 12(2011), p. 2825.
      [32]
      G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements, J. Phys.: Condens. Matter, 6(1994), No. 40, p. 8245. doi: 10.1088/0953-8984/6/40/015
      [33]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
      [34]
      P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953. doi: 10.1103/PhysRevB.50.17953
      [35]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [36]
      Q.R. Tian, N.F. Liu, W. Shen, X.Y. Xu, and J.X. Fu, Morphological differences of MnS inclusions in medium-carbon steel with different manganese and sulfur contents, Steel Res. Int., 94(2023), No. 9, art.No. 2300074. doi: 10.1002/srin.202300074
      [37]
      Q.R. Tian, B. Liu, W. Shen, T. Hu, J.X. Fu, and X.Y. Xu, Nucleation, growth, sintering, and densification of sulfide in 1215MS free-cutting steel billet, Steel Res. Int., 94(2023), No. 6, art.No. 2200674. doi: 10.1002/srin.202200674
      [38]
      M. Kuriyama and S. Hosoya, X-ray measurement of scattering factors of manganese and oxygen atoms in manganous oxide, J. Phys. Soc. Jpn., 17(1962), No. 6, p. 1022. doi: 10.1143/JPSJ.17.1022
      [39]
      C.H. Leung and L.H. Van Vlack, Solubility limits in binary (Ca, Mn) chalcogenides, J. Am. Ceram. Soc., 62(1979), No. 11-12, p. 613. doi: 10.1111/j.1151-2916.1979.tb12743.x
      [40]
      C.H. Griffiths, Cubic manganous telluride, J. Mater. Sci., 13(1978), No. 3, p. 513. doi: 10.1007/BF00541800
      [41]
      W.T. Lv, L.C. Yan, X.L. Pang, et al., Study of the stability of α-Fe/MnS interfaces from first principles and experiment, Appl. Surf. Sci., 501(2020), art. No. 144017. doi: 10.1016/j.apsusc.2019.144017
      [42]
      A.J. Panson and W.D. Johnston, The MnTe–MnSe system, J. Inorg. Nucl. Chem., 26(1964), No. 5, p. 701. doi: 10.1016/0022-1902(64)80312-2
      [43]
      W.D. Johnston and D.E. Sestrich, The MnTe–GeTe phase diagram, J. Inorg. Nucl. Chem., 19(1961), No. 3-4, p. 229. doi: 10.1016/0022-1902(61)80111-5
      [44]
      S.S. Abdul Noor, Magnetic phase transition in Mn0.5Te0.5– xSb x, J. Appl. Phys., 61(1987), No. 8, p. 3549. doi: 10.1063/1.338720
      [45]
      S. Furuseth, A. Kjekshus, R.J.V. Niklasson, J. Brunvoll, and M. Hinton, On the properties of alpha-MnS and MnS2, Acta Chem. Scand., 19(1965), p. 1405. doi: 10.3891/acta.chem.scand.19-1405
      [46]
      W. Shen, Z.W. Li, Q.R. Tian, and J.X. Fu, Modification of sulfide distribution in 46MnVS non-quenched and tempered steel by tellurium, Steelmaking, 39(2023), No. 2, p. 56.
      [47]
      Z.Z. Liu, J. Wei, and K.K. Cai, A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel, ISIJ Int., 42(2002), No. 9, p. 958. doi: 10.2355/isijinternational.42.958

    Catalog


    • /

      返回文章
      返回