Cite this article as:

Xiaoyan Wang, Safeer Jan, Zhiyong Wang, and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp.803-811. https://dx.doi.org/10.1007/s12613-023-2770-y
Xiaoyan Wang, Safeer Jan, Zhiyong Wang, and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp.803-811. https://dx.doi.org/10.1007/s12613-023-2770-y
引用本文 PDF XML SpringerLink

电解固态Bi2O3制备具有高CO2电还原活性及高甲酸选择性的纳米金属铋催化剂

摘要: 二氧化碳(CO2)电化学还原是碳中和研究的一个重要方向。然而,目前的CO2电还原催化剂在稳定性、产物选择性以及活性等方面均有待提升。铋金属因其低成本、低毒性以及高CO2电还原活性及高甲酸选择性而备受青睐。本文中,我们采用固态电解,直接电化学还原商业氧化铋的固态电极制备了纳米多孔铋电极(粒径约80 nm)。应用于CO2电催化还原研究时,该纳米多孔铋电极在−0.78 V(相对于可逆氢电极RHE)表现出高达97.6%的甲酸选择性。当电极电势为−1.10 V vs. RHE时,该电极上CO2还原电流高达40.0 mA⋅cm−2,甲酸选择性仍保持86.0%。采用纳米尺寸的氧化铋前驱体可进一步将金属铋催化剂的原生粒径降低至30~50 nm,此时可提升低过电位下CO2还原时甲酸的选择性。例如,在−0.63 V vs. RHE时,甲酸选择性由原来的68.0%增加到81.7%。本工作中铋催化剂表现出优异的CO2电催化活性与其由互相连通的铋纳米网构成纳米多孔结构密切相关,该独特结构提供了CO2分子的扩散路径以及丰富的反应活性位点。

 

Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2

Abstract: CO2 electrochemical reduction (CO2ER) is an important research area for carbon neutralization. However, available catalysts for CO2 reduction are still characterized by limited stability and activity. Recently, metallic bismuth (Bi) has emerged as a promising catalyst for CO2ER. Herein, we report the solid cathode electroreduction of commercial micronized Bi2O3 as a straightforward approach for the preparation of nanostructured Bi. At −1.1 V versus reversible hydrogen electrode in a KHCO3 aqueous electrolyte, the resulting nanostructure Bi delivers a formate current density of ~40 mA·cm−2 with a current efficiency of ~86%, and the formate selectivity reaches 97.6% at −0.78 V. Using nanosized Bi2O3 as the precursor can further reduce the primary particle sizes of the resulting Bi, leading to a significantly increased formate selectivity at relatively low overpotentials. The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure, which exposes abundant active sites for CO2 electrocatalytic reduction.

 

/

返回文章
返回