Cite this article as:

Xuemeng Gan, Shaofu Li, Shunyuan Xiao, and Yafeng Yang, Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.413-426. https://dx.doi.org/10.1007/s12613-023-2774-7
Xuemeng Gan, Shaofu Li, Shunyuan Xiao, and Yafeng Yang, Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp.413-426. https://dx.doi.org/10.1007/s12613-023-2774-7
引用本文 PDF XML SpringerLink

低成本粉末冶金钛合金形性调控一体化研究进展综述

摘要: 粉末冶金钛合金技术在实际生产应用过程中存在以下三个关键问题:烧结致密度低导致性能差、固溶氧杂质含量高引起塑性严重衰退、混合粉体组分不均匀造成零部件的烧结变形。本论文总结并综述了本研究团队在解决上述问题的研究进展工作。首先,提出了利用反应诱发低温液相形成来强化钛合金烧结的新策略,通过开发了新型烧结辅助剂将烧结致密度提升至99%以上;然后,针对固溶氧杂质含量高诱发材料脆性问题,揭示了钛粉表面氧化膜的起始溶解温度,建立了氧杂质吸附剂的设计准则(在氧化膜溶解前对其反应清除),通过引入0.3wt%的NdB6氧吸附剂实现了钛合金塑性的大幅提升。最后,通过粉体改性技术实现了烧结助剂和氧杂质吸附剂在钛粉表面的均匀包覆,促进了冷压生坯烧结过程中的成分快速均匀化,强化了均匀线性收缩能力,解决了粉末冶金钛合金的烧结变形问题,制备出多种几何形状复杂、尺寸精度高的钛合金零部件。基于上述基础理论和研究成果形成了低成本粉末冶金钛合金形性调控一体化技术,推动了粉末冶金钛合金的技术发展和工程应用。

 

Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review

Abstract: The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressureless sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deformation resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near-complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissolution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder-coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundamental findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review.

 

/

返回文章
返回